Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tommi Möykkynen is active.

Publication


Featured researches published by Tommi Möykkynen.


Neuropsychopharmacology | 2009

Long-lasting Modulation of Glutamatergic Transmission in VTA Dopamine Neurons after a Single Dose of Benzodiazepine Agonists

Anne E Heikkinen; Tommi Möykkynen; Esa R. Korpi

Initial effects of drugs of abuse seem to converge on the mesolimbic dopamine pathway originating from the ventral tegmental area (VTA). Even after a single dose, many drugs of abuse are able to modulate the glutamatergic transmission activating the VTA dopamine neurons, which may represent a critical early stage in the development of addiction. Ligands acting on the benzodiazepine site of the inhibitory γ-aminobutyric acid type A (GABAA) receptors are known to be rewarding in animal models and have abuse liability in humans, but notably little evidence exists on the involvement of the mesolimbic dopamine system in their effects. Here we report that single in vivo doses of benzodiazepine-site agonists, similar to morphine and ethanol, induce a modulation in the glutamatergic transmission of VTA dopamine neurons. This is seen 24 h later as an increase in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated excitatory currents using whole-cell patch-clamp configuration in mouse VTA slices. The effect was due to increased frequency of spontaneous miniature AMPA receptor-mediated currents. It lasted at least 3 days after the injection of diazepam, and was prevented by coadministration of the benzodiazepine-site antagonist flumazenil or the NMDA receptor antagonist dizocilpine. A single injection of the GABAA receptor α1 subunit-preferring benzodiazepine-site ligand zolpidem also produced an increase in the AMPA/NMDA ratio in VTA dopamine neurons. These findings suggest a role for the mesolimbic dopamine system in the initial actions of and on neuronal adaptation to benzodiazepines.


BMC Pharmacology | 2006

Impact of ε and θ subunits on pharmacological properties of α3β1 GABAA receptors expressed in Xenopus oocytes

Martin Ranna; Saku T. Sinkkonen; Tommi Möykkynen; Esa R. Korpi

Backgroundγ-Aminobutyric acid type A (GABAA) receptors provide the main inhibitory control in the brain. Their heterogeneity may make it possible to precisely target drug effects to selected neuronal populations. In situ hybridization using rat brain sections has revealed a unique expression of GABAA receptor ε and θ subunit transcripts in the locus coeruleus, where they are accompanied at least by α3, α2, β1 and β3 subunits. Here, we studied the pharmacology of the human α3β1, α3β1ε, α3β1θ and α3β1εθ receptor subtypes expressed in Xenopus oocytes and compared them with the γ2 subunit-containing receptors.ResultsThe GABA sensitivites and effects of several positive modulators of GABAA receptors were studied in the absence and the presence of EC25 GABA using the two-electrode voltage-clamp method. We found 100-fold differences in GABA sensitivity between the receptors, α3β1ε subtype being the most sensitive and α3β1γ2 the least sensitive. Also gaboxadol dose-response curves followed the same sensitivity rank order, with EC50 values being 72 and 411 μM for α3β1ε and α3β1γ2 subtypes, respectively. In the presence of EC25 GABA, introduction of the ε subunit to the receptor complex resulted in diminished modulatory effects by etomidate, propofol, pregnanolone and flurazepam, but not by pentobarbital. Furthermore, the α3β1ε subtype displayed picrotoxin-sensitive spontaneous activity. The θ subunit-containing receptors were efficiently potentiated by the anesthetic etomidate, suggesting that θ subunit could bring the properties of β2 or β3 subunits to the receptor complex.ConclusionThe ε and θ subunits bring additional features to α3β1 GABAA receptors. These receptor subtypes may constitute as novel drug targets in selected brain regions, e.g., in the brainstem locus coeruleus nuclei.


Basic & Clinical Pharmacology & Toxicology | 2012

Acute effects of ethanol on glutamate receptors.

Tommi Möykkynen; Esa R. Korpi

Several studies have revealed that acute ethanol inhibits the function of glutamate receptors. Glutamate receptor-mediated synaptic plasticity, such as N-methyl-D-aspartate-dependent long-term potentiation, is also inhibited by ethanol. However, the inhibition seems to be restricted to certain brain areas such as the hippocampus, amygdala and striatum. Ethanol inhibition of glutamate receptors generally requires relatively high concentrations and may therefore explain consequences of severe ethanol intoxication such as impairment of motor performance and memory. Effects of ethanol on glutamate system of developing nervous system may have a role in causing foetal alcohol syndrome. Newly found regulatory proteins of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid AMPA receptors seem to affect ethanol inhibition thus opening new lines of research.


The Journal of Neuroscience | 2006

Isoform-Specific Early Trafficking of AMPA Receptor Flip and Flop Variants

Sarah K. Coleman; Tommi Möykkynen; Chunlin Cai; Lotta von Ossowski; Esa Kuismanen; Esa R. Korpi; Kari Keinänen

Flip and flop splice variants of AMPA receptor subunits are expressed in distinct but partly overlapping patterns and impart different desensitization kinetics to cognate receptor channels. In the absence of specific antibodies, isoform-specific differences in trafficking or localization of native flip and flop subunits remain uncharacterized. We report that in several transfected cell lines, transport of homomeric glutamate receptor (GluR)-Dflop receptors is largely blocked at the endoplasmic reticulum (ER) exit, whereas GluR-Dflip undergoes complex glycosylation and reaches the plasma membrane at >10× higher levels than GluR-Dflop, as determined by immunofluorescence, patch-clamp recordings and biochemical assays. The transport difference between flip and flop is independent of activity, is primarily determined by amino acid residue 780 (Leu in flop, Val in flip), and is manifested even in the secretion of the soluble ligand-binding domain, suggesting it is independent of oligomerization. Coexpression with stargazin or with the flip isoform rescues the surface expression of GluR-Dflop near to the level exhibited by GluR-Dflip. Our results demonstrate that the extracellular flip/flop region, via interactions with ER luminal splice form-specific protein(s), plays a hitherto unappreciated and important role in AMPA-receptor trafficking.


The Journal of Neuroscience | 2009

Agonist Occupancy Is Essential for Forward Trafficking of AMPA Receptors

Sarah K. Coleman; Tommi Möykkynen; Annukka Jouppila; Susanna Koskelainen; Claudio Rivera; Esa R. Korpi; Kari Keinänen

Regulated trafficking of AMPA receptors to cell surface and to synapses is an important determinant of neuronal excitability. In the present study, we have addressed the role of agonist binding and desensitization in the early trafficking of glutamate receptor-D (GluR-D) AMPA receptors. Analysis of point-mutated GluR-D receptors, via electrophysiology and immunofluorescence, revealed that agonist-binding activity is essential for efficient delivery to cell surface in transfected cell lines and in neurons. Cotransfection with stargazin could fully rescue the surface expression of nonbinding mutant receptors in cell lines, indicating that stargazin is able to interact with and promote exit of AMPA receptors from endoplasmic reticulum (ER) independently of agonist binding. Secretion of separately expressed ligand-binding domain constructs showed a similar dependency of agonist binding to that observed with full-length GluR-D, supporting the idea that glutamate-induced closure of the binding site cleft is registered by ER quality control as a necessary priming step for transport competence. In contrast to agonist binding, the ability of the receptor to undergo desensitization had only a minor influence on trafficking. Our results are consistent with the hypothesis that AMPA receptors are synthesized as intrinsically unstable molecules, which require glutamate binding for structural stability and for transport-competence.


European Journal of Neuroscience | 2004

Behavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model

Saku T. Sinkkonen; Olga Y. Vekovischeva; Tommi Möykkynen; Waltraud Ogris; Werner Sieghart; William Wisden; Esa R. Korpi

GABAA receptors mediate fast phasic inhibitory postsynaptic potentials and participate in slower tonic extrasynaptic inhibition. Thy1α6 mice with ectopic forebrain expression of GABAA receptor α6 subunits exhibit increased extrasynaptic GABAA receptor‐mediated background conductance and reduced synaptic GABAA receptor currents in hippocampal CA1 neurons [W. Wisden et al. (2002) Neuropharmacology 43, 530–549]. Here we demonstrate that isolated CA1 neurons of these mice showed furosemide‐sensitivity of GABA‐evoked currents, confirming the functional expression of α6 subunit. In addition, receptor autoradiography of the CA1 region of Thy1α6 brain sections revealed pharmacological features that are unique for α6βγ2 and α6β receptors. The existence of atypical α6β receptors was confirmed after completely eliminating GABAA receptors containing γ1, γ2, γ3 or δ subunits using serial immunoaffinity chromatography on subunit‐specific GABAA receptor antibodies. Behaviourally, the Thy1α6 mice showed normal features with slightly enhanced startle reflex and struggle‐escape behaviours. However, they were more sensitive to GABAA antagonists DMCM (shorter latency to writhing clonus) and picrotoxinin (shorter latency to generalized convulsions). Tiagabine, an antiepileptic GABA‐uptake inhibitor that increases brain GABA levels, delayed picrotoxinin‐induced convulsions at a low dose of 3.2 mg/kg in Thy1α6 mice, but not in control mice; however, the overall effect of higher tiagabine doses on the convulsion latency remained smaller in the Thy1α6 mice. Altered balance between extrasynaptic and synaptic receptors thus affects seizure sensitivity to GABAergic convulsants. Importantly, the increased extrasynaptic inhibition, even when facilitated in the presence of tiagabine, was not able fully to counteract enhanced seizure induction by GABAA antagonists.


Journal of Biological Chemistry | 2010

Ligand-binding Domain Determines Endoplasmic Reticulum Exit of AMPA Receptors

Sarah K. Coleman; Tommi Möykkynen; Sami Hinkkuri; Lauri Vaahtera; Esa R. Korpi; Olli T. Pentikäinen; Kari Keinänen

AMPA receptors (AMPARs) are tetrameric ion channels that mediate rapid glutamate signaling in neurons and many non-neuronal cell types. Endoplasmic reticulum (ER) quality control mechanisms permit only correctly folded functional receptors to be delivered to the cell surface. We analyzed the biosynthetic maturation and transport of all 12 GluA1–4 subunit splice variants as homomeric receptors and observed robust isoform-dependent differences in ER exit competence and surface expression. In contrast to inefficient ER exit of both GluA3 splice forms and the flop variants of GluA1 and GluA4, prominent plasma membrane expression was observed for the other AMPAR isoforms. Surprisingly, deletion of the entire N-terminal domain did not alter the transport phenotype, nor did the different cytosolic C-terminal tail splice variants. Detailed analysis of mutant receptors led to the identification of distinct residues in the ligand-binding domain as primary determinants for isoform-specific maturation. Considered together with the essential role of bound agonist, our findings reveal the ligand-binding domain as the critical quality control target in AMPAR biogenesis.


PLOS ONE | 2012

Importance of GluA1 Subunit-Containing AMPA Glutamate Receptors for Morphine State-Dependency

Teemu Aitta-aho; Tommi Möykkynen; Anne Panhelainen; Olga Y. Vekovischeva; Pia Bäckström; Esa R. Korpi

In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days) using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test); in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards), in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity.


Alcohol | 2009

Ethanol increases desensitization of recombinant GluR-D AMPA receptor and TARP combinations

Tommi Möykkynen; Sarah K. Coleman; Kari Keinänen; David M. Lovinger; Esa R. Korpi

Glutamate receptors are important target molecules of the acute effect of ethanol. We studied ethanol sensitivity of homomeric GluR-D receptors expressed in human embryonic kidney 293 cells and examined whether recently discovered transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor regulatory proteins (TARPs) affect ethanol sensitivity. Coexpression of the TARPs, stargazin, and gamma4 increased the time constant (tau-value) of current decay in the presence of agonist, thus slowing the onset of desensitization and increasing the steady-state current. Ethanol produced less inhibition of the peak current than the steady-state current for all types of the GluR-D receptors. In addition, ethanol concentration-dependently accelerated the rate of desensitization, measured as the tau-value of fast decay of peak current. This effect was enhanced with coexpression of TARPs. The recovery from desensitization was slowed down by coexpression of gamma4 but ethanol did not affect this process in any GluR-D combination. The results support the idea that increased desensitization is an important mechanism in the ethanol inhibition of AMPA receptors and indicate that coexpression of TARPs can alter this effect of ethanol.


Journal of Neuroscience Research | 2005

The neuroprotective KDI domain of γ1-laminin is a universal and potent inhibitor of ionotropic glutamate receptors

Tommi Möykkynen; Ron Liebkind; Jari Sjöberg; Esa R. Korpi; Päivi Liesi

Previous work from this laboratory indicates that the KDI (Lys‐Asp‐Ile) domain of γ1‐laminin promotes functional regeneration of adult rat spinal cord injuries and protects adult rat hippocampal neurons against massive neuronal death induced by intracerebral injection of the glutamate analogue kainic acid. In the present study, we used patch clamp recordings on cultured human embryonic neocortical neurons and HEK 293 cells expressing recombinant glutamate receptor subunits to study a putative interaction of the KDI with the glutamate system. We show that the KDI domain of γ1‐laminin is a universal and potent inhibitor of AMPA, kainate, and NMDA subclasses of glutamate receptors, with a noncompetitive action on the AMPA receptor channel activity. Glutamate neurotoxicity plays a key role in both CNS trauma and neurodegenerative disorders, so this unexpected, novel function of the γ1‐laminin‐derived tripeptide may prove clinically valuable in treatment of CNS trauma and/or disease.

Collaboration


Dive into the Tommi Möykkynen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Lovinger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge