Tommie V. McCarthy
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tommie V. McCarthy.
Human Mutation | 2000
Tommie V. McCarthy; Kathleen A. Quane; Patrick J. Lynch
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that manifests in response to anesthetic triggering agents. Central core disease (CCD) is a myopathy closely associated with MH. Both MH and CCD are primarily disorders of calcium regulation in skeletal muscle. The ryanodine receptor (RYR1) gene encodes the key channel which mediates calcium release in skeletal muscle during excitation–contraction coupling, and mutations in this gene are considered to account for susceptibility to MH (MHS) in more than 50% of cases and in the majority of CCD cases. To date, 22 missense mutations in the 15,117 bp coding region of the RYR1 cDNA have been found to segregate with the MHS trait, while a much smaller number of these mutations is associated with CCD. The majority of RYR1 mutations appear to be clustered in the N‐terminal amino acid residues 35‐614 (MH/CCD region 1) and the centrally located residues 2163‐2458 (MH/CCD region 2). The only mutation identified outside of these regions to date is a single mutation associated with a severe form of CCD in the highly conserved C‐terminus of the gene. All of the RYR1 mutations result in amino acid substitutions in the myoplasmic portion of the protein, with the exception of the mutation in the C‐terminus, which resides in the lumenal/transmembrane region. Functional analysis shows that MHS and CCD mutations produce RYR1 abnormalities that alter the channel kinetics for calcium inactivation and make the channel hyper‐ and hyposensitive to activating and inactivating ligands, respectively. The likely deciding factors in determining whether a particular RYR1 mutation results in MHS alone or MHS and CCD are: sensitivity of the RYR1 mutant proteins to agonists; the level of abnormal channel‐gating caused by the mutation; the consequential decrease in the size of the releasable calcium store and increase in resting concentration of calcium; and the level of compensation achieved by the muscle with respect to maintaining calcium homeostasis. From a diagnostic point of view, the ultimate goal of development of a simple non‐invasive test for routine diagnosis of MHS remains elusive. Attainment of this goal will require further detailed molecular genetic investigations aimed at solving heterogeneity and discordance issues in MHS; new initiatives aimed at identifying modulating factors that influence the penetrance of clinical MH in MHS individuals; and detailed studies aimed at describing the full epidemiological picture of in vitro responses of muscle to agents used in diagnosis of MH susceptibility. Hum Mutat 15:410–417, 2000.
Muscle & Nerve | 2000
Karin Jurkat-Rott; Tommie V. McCarthy; Frank Lehmann-Horn
Malignant hyperthermia (MH) is a potentially life‐threatening event in response to anesthetic triggering agents, with symptoms of sustained uncontrolled skeletal muscle calcium homeostasis resulting in organ and systemic failure. Susceptibility to MH, an autosomal dominant trait, may be associated with congenital myopathies, but in the majority of the cases, no clinical signs of disease are visible outside of anesthesia. For diagnosis, a functional test on skeletal muscle biopsy, the in vitro contracture test (IVCT), is performed. Over 50% of the families show linkage of the IVCT phenotype to the gene encoding the skeletal muscle ryanodine receptor and over 20 mutations therein have been described. At least five other loci have been defined implicating greater genetic heterogeneity than previously assumed, but so far only one further gene encoding the main subunit of the voltage‐gated dihydropyridine receptor has a confirmed role in MH. As a result of extensive research on the mechanisms of excitation‐contraction coupling and recent functional characterization of several disease‐causing mutations in heterologous expression systems, much is known today about the molecular etiology of MH.
Journal of Biological Chemistry | 1997
Jiefei Tong; Hideto Oyamada; Nicolas Demaurex; Sergio Grinstein; Tommie V. McCarthy; David H. MacLennan
Malignant hyperthermia (MH) and central core disease (CCD) are autosomal dominant disorders of skeletal muscle in which a potentially fatal hypermetabolic crisis can be triggered by commonly used anesthetic agents. To date, 17 mutations in the humanRYR1 gene encoding the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) have been associated with MH and/or CCD. Although many of these mutations have been linked to MH and/or CCD, with high lod (log of the odds favoring linkage versus nonlinkage) scores, others have been found in single, small families. Independent biochemical evidence for a causal role for these mutations in MH is available for only two mutants. Mutations corresponding to the human MH mutations were made in a full-length rabbit RYR1 cDNA, and wild type and mutant cDNAs were transfected into HEK-293 cells. After about 48 h, intact cells were loaded with the fluorescent Ca2+indicator, fura-2, and intracellular Ca2+ release, induced by caffeine or halothane, was measured by photometry. Ca2+release in cells expressing MH or CCD mutant ryanodine receptors was invariably significantly more sensitive to low concentrations of caffeine and halothane than Ca2+ release in cells expressing wild type receptors or receptors mutated in other regions of the molecule. Linear regression analysis showed that there is a strong correlation (r = 0.95, p < 0.001) between caffeine sensitivity of different RYR1 mutants measured by the cellular Ca2+ photometry assay and by the clinical in vitro caffeine halothane contracture test (IVCT). The correlation was weaker, however, for halothane (r = 0.49, p > 0.05). Abnormal sensitivity in the Ca2+ photometry assay provides supporting evidence for a causal role in MH for each of 15 single amino acid mutations in the ryanodine receptor. The study demonstrates the usefulness of the cellular Ca2+ photometry assay in the assessment of the sensitivity to caffeine and halothane of specific ryanodine receptor mutants.
Journal of Biological Chemistry | 1999
Jiefei Tong; Tommie V. McCarthy; David H. MacLennan
Malignant hyperthermia (MH) and central core disease (CCD) mutations were introduced into full-length rabbit Ca2+ release channel (RYR1) cDNA, which was then expressed transiently in HEK-293 cells. Resting Ca2+ concentrations were higher in HEK-293 cells expressing homotetrameric CCD mutant RyR1 than in cells expressing homotetrameric MH mutant RyR1. Cells expressing homotetrameric CCD or MH mutant RyR1 exhibited lower maximal peak amplitudes of caffeine-induced Ca2+ release than cells expressing wild type RyR1, suggesting that MH and CCD mutants might be “leaky.” In cells expressing homotetrameric wild type or mutant RyR1, the amplitude of 10 mm caffeine-induced Ca2+ release was correlated significantly with the amplitude of carbachol- or thapsigargin-induced Ca2+ release, indicating that maximal drug-induced Ca2+ release depends on the size of the endoplasmic reticulum Ca2+ store. The content of endogenous sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b), measured by enzyme-linked immunosorbent assay,45Ca2+ uptake, and confocal microscopy, was increased in HEK-293 cells expressing wild type or mutant RyR1, supporting the view that endoplasmic reticulum Ca2+ storage capacity is increased as a compensatory response to an enhanced Ca2+ leak. When heterotetrameric (1:1) combinations of MH/CCD mutant and wild type RyR1 were expressed together with SERCA1 to enhance Ca2+ reuptake, the amplitude of Ca2+release in response to low concentrations of caffeine and halothane was higher than that observed in cells expressing wild type RyR1 and SERCA1. In Ca2+-free medium, MH/CCD mutants were more sensitive to caffeine than wild type RyR1, indicating that caffeine hypersensitivity observed with a variety of MH/CCD mutant RyR1 proteins is not dependent on extracellular Ca2+ concentration.
Cell | 1986
Ian Teo; Barbara Sedgwick; Michael W. Kilpatrick; Tommie V. McCarthy; Tomas Lindahl
The E. coli ada gene positively controls its own expression and that of other genes (alkA, alkB, aidB) involved in repair of DNA alkylation damage. The cloned ada and alkA genes and purified Ada protein have been used in cell-free systems to identify the inducing signal. Self-methylation of the Ada protein by transfer of a methyl group from a phosphotriester in alkylated DNA to a cysteine residue in the protein converts it to an activator of transcription. The covalently modified Ada protein binds specifically to promoter regions containing the sequence d(AAANNAAAGCGCA) immediately upstream of the RNA polymerase binding sites. This is apparently the first example of conversion of a regulatory gene product to a transcriptional activator by a posttranslational modification event.
The EMBO Journal | 1984
Tommie V. McCarthy; P Karran; Tomas Lindahl
The three miscoding alkylated pyrimidines O2‐methylcytosine, O2‐methylthymine and O4‐methylthymine are specifically recognized by Escherichia coli DNA repair enzymes. The activities are induced as part of the adaptive response to alkylating agents. O2‐Methylcytosine and O2‐methylthymine are removed by a DNA glycosylase, the alkA+ gene product, which also acts on N3‐methylated purines. O4‐Methylthymine is repaired by a methyltransferase, previously known to correct O6‐methylguanine by transfer of the methyl group to one of its own cysteine residues. It is proposed that certain common structural features of the various methylated bases allow each of the two inducible repair enzymes to recognize and remove several different kinds of lesions from alkylated DNA.
American Journal of Human Genetics | 1998
Bernadette M. Manning; Kathleen A. Quane; Helle Ørding; Albert Urwyler; Vincenzo Tegazzin; Mary Lehane; John O'Halloran; Edmund Hartung; Linda Giblin; Patrick J. Lynch; Pat Vaughan; Kathrin Censier; D. Bendixen; Giacomo P. Comi; Luc Heytens; Koen Monsieurs; Tore Fagerlund; Werner Wolz; J.J.A. Heffron; Clemens R. Müller; Tommie V. McCarthy
Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that is triggered in genetically predisposed individuals by common anesthetics and muscle relaxants. The ryanodine receptor (RYR1) is mutated in a number of MH pedigrees, some members of which also have central core disease (CCD), an inherited myopathy closely associated with MH. Mutation screening of 6 kb of the RYR1 gene has identified four adjacent novel mutations, C6487T, G6488A, G6502A, and C6617T, which result in the amino acid alterations Arg2163Cys, Arg2163His, Val2168Met, and Thr2206Met, respectively. Collectively, these mutations account for 11% of MH cases and identify the gene segment 6400-6700 as a mutation hot spot. Correlation analysis of the in vitro contracture-test data available for pedigrees bearing these and other RYR1 mutations showed an exceptionally good correlation between caffeine threshold and tension values, whereas no correlation was observed between halothane threshold and tension values. This finding has important ramifications for assignment of the MH-susceptible phenotype, in genotyping studies, and indicates that assessment of recombinant individuals on the basis of caffeine response is justified, whereas assessment on the basis of halothane response may be problematic. Interestingly, the data suggest a link between the caffeine threshold and tension values and the MH/CCD phenotype.
BMC Genetics | 2010
Christine Beecher; Mairead Daly; Stuart Childs; D.P. Berry; David A. Magee; Tommie V. McCarthy; Linda Giblin
BackgroundMastitis, an inflammation of the mammary gland, is a major source of economic loss on dairy farms. The aim of this study was to quantify the associations between two previously identified polymorphisms in the bovine toll-like receptor 2 (TLR2) and chemokine receptor 1 (CXCR1) genes and mammary health indictor traits in (a) 246 lactating dairy cow contemporaries representing five breeds from one research farm and (b) 848 Holstein-Friesian bulls that represent a large proportion of the Irish dairy germplasm. To expand the study, a further 14 polymorphisms in immune genes were included for association studies in the bull population.ResultsTLR4-2021 associated (P < 0.05) with both milk protein and fat percentage in late lactation (P < 0.01) within the cow cohort. No association was observed between this polymorphism and either yield or composition of milk within the bull population. CXCR1-777 significantly associated (P < 0.05) with fat yield in the bull population and tended to associate (P < 0.1) with somatic cell score (SCS) in the cows genotyped. CD14-1908 A allele was found to associate with increased (P < 0.05) milk fat and protein yield and also tended to associate with increased (P < 0.1) milk yield. A SERPINA1 haplotype with superior genetic merit for milk protein yield and milk fat percentage (P < 0.05) was also identified.ConclusionOf the sixteen polymorphisms in seven immune genes genotyped, just CXCR1-777 tended to associate with SCS, albeit only in the on-farm study. The lack of an association between the polymorphisms with SCS in the Holstein-Friesian data set would question the potential importance of these variants in selection for improved mastitis resistance in the Holstein-Friesian cow.
Analytical and Bioanalytical Chemistry | 2009
Desmond Brennan; John Justice; Brian Corbett; Tommie V. McCarthy; Paul Galvin
This review describes recently emerging optical and microfluidic technologies suitable for point-of-care genetic analysis systems. Such systems must rapidly detect hundreds of mutations from biological samples with low DNA concentration. We review optical technologies delivering multiplex sensitivity and compatible with lab-on-chip integration for both tagged and non-tagged optical detection, identifying significant source and detector technology emerging from telecommunications technology. We highlight the potential for improved hybridization efficiency through careful microfluidic design and outline some novel enhancement approaches using target molecule confinement. Optimization of fluidic parameters such as flow rate, channel height and time facilitates enhanced hybridization efficiency and consequently detection performance as compared with conventional assay formats (e.g. microwell plates). We highlight lab-on-chip implementations with integrated microfluidic control for “sample-to-answer” systems where molecular biology protocols to realize detection of target DNA sequences from whole blood are required. We also review relevant technology approaches to optofluidic integration, and highlight the issue of biomolecule compatibility. Key areas in the development of an integrated optofluidic system for DNA hybridization are optical/fluidic integration and the impact on biomolecules immobilized within the system. A wide range of technology platforms have been advanced for detection, quantification and other forms of characterization of a range of biomolecules (e.g. RNA, DNA, protein and whole cell). Owing to the very different requirements for sample preparation, manipulation and detection of the different types of biomolecules, this review is focused primarily on DNA–DNA interactions in the context of point-of-care analysis systems.
Journal of Biological Chemistry | 2003
Sinéad M. Kerins; R. Collins; Tommie V. McCarthy
Previous characterization of Escherichia coli endonuclease IV has shown that the enzyme specifically cleaves the DNA backbone at apurinic/apyrimidinic sites and removes 3′ DNA blocking groups. By contrast, and unlike the major apurinic/apyrimidinic endonuclease exonuclease III, negligible exonuclease activity has been associated with endonuclease IV. Here we report that endonuclease IV does possess an intrinsic 3′-5′ exonuclease activity. The activity was detected in purified preparations of the endonuclease IV protein from E. coli and from the distantly related thermophile Thermotoga maritima; it co-eluted with both enzymes under different chromatographic conditions. Induction of either endonuclease IV in an E. coli overexpression system resulted in induction of the exonuclease activity, and the E. coli exonuclease activity had similar heat stability to the endonuclease IV AP endonuclease activity. Characterization of the exonuclease activity showed that its progression on substrate is sensitive to ionic strength, metal ions, EDTA, and reducing conditions. Substrates with 3′ recessed ends were preferred substrates for the 3′-5′ exonuclease activity. Comparison of the relative apurinic/apyrimidinic endonuclease and exonuclease activity of endonuclease IV shows that the relative exonuclease activity is high and is likely to be significant in vivo.