Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoaki Ichijo is active.

Publication


Featured researches published by Tomoaki Ichijo.


Scientific Reports | 2012

Global dispersion of bacterial cells on Asian dust

Nobuyasu Yamaguchi; Tomoaki Ichijo; Akiko Sakotani; Takashi Baba; Masao Nasu

The atmospheric dispersion of bacteria over long distances is an important facet of microbial ecology. Certain groups of dispersed bacteria can adapt to their new location and affect established ecosystems. Aeolian dust particles are known to be carriers of microbes but further research is needed to expand our understanding of this field of microbiology. Here we showed the potential of aeolian dust to global migration of bacterial cells. We demonstrated the presence of microbial cells on dust particles directly by bio-imaging. Bacterial abundance on dust particles declined from 105 to less than 103 cells/m3 as the dust event subsided. Taxonomically diverse bacteria were identified by 16S rRNA gene sequencing and some of these bacteria retained growth potential. Our results confirm that bacteria can attach to aeolian dust particles and they have the potential to migrate globally during dust events and thus can contribute to the diversity of downwind ecosystems.


Microbes and Environments | 2014

Microbial monitoring of crewed habitats in space-current status and future perspectives.

Nobuyasu Yamaguchi; Michael A Roberts; Sarah Castro; Cherie Oubre; Koichi Makimura; Natalie Leys; Elisabeth Grohmann; Takashi Sugita; Tomoaki Ichijo; Masao Nasu

Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.


Microbes and Environments | 2012

High Prevalence of qnr and aac(6')-Ib-cr Genes in Both Water-Borne Environmental Bacteria and Clinical Isolates of Citrobacter freundii in China

Rong Zhang; Tomoaki Ichijo; Yonglu Huang; Jiachang Cai; Hong-Wei Zhou; Nobuyasu Yamaguchi; Masao Nasu; Gong-Xiang Chen

We investigated the prevalence of qnr and aac(6′)-Ib-cr genes in water-borne environmental bacteria and in clinical isolates of Enterobacteriaceae, as well as the subtypes of qnr. Environmental bacteria were isolated from surface water samples obtained from 10 different locations in Hangzhou City, and clinical isolates of Citrobacter freundii were isolated from several hospitals in four cities in China. qnrA, qnrB, qnrS, and aac(6′)-Ib-cr genes were screened using PCR, and the genotypes were analyzed by DNA sequencing. Ten of the 78 Gram-negative bacilli isolated from water samples were C. freundii and 80% of these isolates carried the qnrB gene. qnrS1 and aac(6′)-Ib-cr genes were detected in two Escherichia coli isolates and qnrS2 was detected in one species, Aeromonas punctata. The qnr and aac(6′)-Ib-cr genes were present in 75 (72.8%) and 12 (11.6%) of 103 clinical isolates of C. freundii, respectively. Of the clinical C. freundii isolates with the qnr gene, 65 isolates (63.1%) carried qnrB, but only three (2.9%) and one (1.0%) carried qnrA1 and qnrS2, respectively, while five isolates carried both qnrA1 and qnrB, and one isolate carried both qnrS1 and qnrB. The qnrB9 gene was the dominant qnrB subtype, followed by qnrB8 and qnrB6. Southern hybridization studies indicated that the qnr genes are located on different plasmids. Plasmids isolated from both environmental and clinical C. freundii isolates appeared to be homogenous.


Microbes and Environments | 2014

Changes in the Airborne Bacterial Community in Outdoor Environments following Asian Dust Events

Nobuyasu Yamaguchi; Jonguk Park; Makiko Kodama; Tomoaki Ichijo; Takashi Baba; Masao Nasu

Bacterial abundance and community compositions have been examined in aeolian dust in order to clarify their possible impacts on public health and ecosystems. The influence of transcontinentally transported bacterial cells on microbial communities in the outdoor environments of downwind areas should be determined because the rapid influx of a large amount of bacterial cells can disturb indigenous microbial ecosystems. In the present study, we analyzed bacteria in air samples (approximately 100 m3 d−1) that were collected on both Asian dust days and non-Asian dust days over 2 years (between November 2010 and July 2012). Changes in bacterial abundance and community composition were investigated based on their 16S rRNA gene amount and sequence diversity. Seasonal monitoring revealed that airborne bacterial abundance was more than 10-fold higher on severe dust days, while moderate dust events did not affect airborne bacterial abundance. A comparison of bacterial community compositions revealed that bacteria in Asian dust did not immediately disturb the airborne microbial community in areas 3,000–5,000 km downwind of dust source regions, even when a large amount of bacterial cells were transported by the atmospheric event. However, microbes in aeolian dust may have a greater impact on indigenous microbial communities in downwind areas near the dust source. Continuous temporal and spatial analyses from dust source regions to downwind regions (e.g., from the Gobi desert to China, Korea, Japan, and North America) will assist in estimating the impact of atmospherically transported bacteria on indigenous microbial ecosystems in downwind areas.


npj Microgravity | 2016

Four-year bacterial monitoring in the International Space Station—Japanese Experiment Module “Kibo” with culture-independent approach

Tomoaki Ichijo; Nobuyasu Yamaguchi; Fumiaki Tanigaki; Masaki Shirakawa; Masao Nasu

Studies on the relationships between humans and microbes in space habitation environments are critical for success in long-duration space missions, to reduce potential hazards to the crew and the spacecraft infrastructure. We performed microbial monitoring in the Japanese Experiment Module “Kibo”, a part of the International Space Station, for 4 years after its completion, and analyzed samples with modern molecular microbiological techniques. Sampling was performed in September 2009, February 2011, and October 2012. The surface of the incubator, inside the door of the incubator, an air intake, air diffuser, and handrail were selected as sampling sites. Sampling was performed using the optimized swabbing method. Abundance and phylogenetic affiliation of bacteria on the interior surfaces of Kibo were determined by quantitative PCR and pyrosequencing, respectively. Bacteria in the phyla Proteobacteria (γ-subclass) and Firmicutes were frequently detected on the interior surfaces in Kibo. Families Staphylococcaceae and Enterobacteriaceae were dominant. Most bacteria detected belonged to the human microbiota; thus, we suggest that bacterial cells are transferred to the surfaces in Kibo from the astronauts. Environmental bacteria such as Legionella spp. were also detected. From the data on bacterial abundance and phylogenetic affiliation, Kibo has been microbiologically well maintained; however, the microbial community structure in Kibo may change with prolonged stay of astronauts. Continuous monitoring is required to obtain information on changes in the microbial community structure in Kibo.


Scientific Reports | 2016

Investigation of bacterial effects of Asian dust events through comparison with seasonal variability in outdoor airborne bacterial community

Jonguk Park; Tomoaki Ichijo; Masao Nasu; Nobuyasu Yamaguchi

Atmospheric bacterial dispersion with aeolian dust has been reported to have a potential impact on public health and ecosystems. Asian dust is a major aeolian event that results in an estimated 4 million tons of Asian dust particles falling in Japan annually, 3,000–5,000 km away from their source regions. However, most studies have only investigated the effects of Asian dust during dust seasons. Therefore, in this study, outdoor bacterial abundance and community composition were determined by 16S rRNA quantitative PCR and amplicon sequencing, respectively, and compared on Asian and non-Asian dust days (2013–2015; 44 samples over four seasons). Seasonal variations in bacterial abundance of non-Asian dust days were not observed. Bacterial abundance of individual samples collected on non-Asian dust days changed dynamically relative to Asian dust days, with bacterial abundance occasionally reaching those of Asian dust days. The bacterial community composition on non-Asian dust days was rather stable seasonally, and did not differ from that on Asian dust days. These results indicate that bacteria in Asian dust does not immediately influence indigenous bacterial communities at the phylum/class level in distant downwind areas; accordingly, further studies of bacterial communities in downwind areas closer to the dust source are warranted.


Microbes and Environments | 2013

Bacterial Monitoring with Adhesive Sheet in the International Space Station-“Kibo”, the Japanese Experiment Module

Tomoaki Ichijo; Hatsuki Hieda; Rie Ishihara; Nobuyasu Yamaguchi; Masao Nasu

Microbiological monitoring is important to assure microbiological safety, especially in long-duration space habitation. We have been continuously monitoring the abundance and diversity of bacteria in the International Space Station (ISS)-“Kibo” module to accumulate knowledge on microbes in the ISS. In this study, we used a new sampling device, a microbe-collecting adhesive sheet developed in our laboratory. This adhesive sheet has high operability, needs no water for sampling, and is easy to transport and store. We first validated the adhesive sheet as a sampling device to be used in a space habitat with regard to the stability of the bacterial number on the sheet during prolonged storage of up to 12 months. Bacterial abundance on the surfaces in Kibo was then determined and was lower than on the surfaces in our laboratory (105 cells [cm2]−1), except for the return air grill, and the bacteria detected in Kibo were human skin microflora. From these aspects of microbial abundance and their phylogenetic affiliation, we concluded that Kibo has been microbiologically well maintained; however, microbial abundance may increase with the prolonged stay of astronauts. To ensure crew safety and understand bacterial dynamics in space habitation environments, continuous bacterial monitoring in Kibo is required.


PLOS ONE | 2014

Distribution and Respiratory Activity of Mycobacteria in Household Water System of Healthy Volunteers in Japan

Tomoaki Ichijo; Yoko Izumi; Sayuri Nakamoto; Nobuyasu Yamaguchi; Masao Nasu

The primary infectious source of nontuberculous mycobacteria (NTM), which are known as opportunistic pathogens, appears to be environmental exposure, and it is important to reduce the frequency of exposure from environmental sources for preventing NTM infections. In order to achieve this, the distribution and respiratory activity of NTM in the environments must be clarified. In this study, we determined the abundance of mycobacteria and respiratory active mycobacteria in the household water system of healthy volunteers using quantitative PCR and a fluorescent staining method, because household water has been considered as one of the possible infectious sources. We chose healthy volunteer households in order to lessen the effect of possible residential contamination from an infected patient. We evaluated whether each sampling site (bathroom drain, kitchen drain, bath heater pipe and showerhead) have the potential to be the sources of NTM infections. Our results indicated that drains in the bathroom and kitchen sink are the niche for Mycobacterium spp. and M. avium cells were only detected in the bathtub inlet. Both physicochemical and biologic selective pressures may affect the preferred habitat of Mycobacterium spp. Regional differences also appear to exist as demonstrated by the presence (US) or absence (Japan) of Mycobacterium spp. on showerheads. Understanding of the country specific human activities and water usage will help to elucidate the infectious source and route of nontuberculous mycobacterial disease.


Biological & Pharmaceutical Bulletin | 2016

Abundance and Community Structure of Bacteria on Asian Dust Particles Collected in Beijing, China, during the Asian Dust Season

Nobuyasu Yamaguchi; Takashi Baba; Tomoaki Ichijo; Yuka Himezawa; Kanami Enoki; Makoto Saraya; Pinfang Li; Masao Nasu

Approximately 180 t/km(2) of Asian dust particles are estimated to fall annually on Beijing, China, and there is significant concern about the influence of microbes transported by Asian dust events on human health and downwind ecosystems. In this study, we collected Asian dust particles in Beijing, and analyzed the bacterial communities on these particles by culture-independent methods. Bacterial cells on Asian dust particles were visualized first by laser scanning microscopy, which demonstrated that Asian dust particles carry bacterial cells to Beijing. Bacterial abundance, as determined by quantitative polymerase chain reaction (PCR), was 10(8) to 10(9) cells/g, a value about 10 times higher than that in Asian dust source soils. Inter-seasonal variability of bacterial community structures among Asian dust samples, as compared by terminal restriction fragment length polymorphism (T-RFLP), was low during the Asian dust season. Several viable bacteria, including intestinal bacteria, were found in Asian dust samples by denaturing gradient gel electrophoresis (DGGE). Clone library analysis targeting 16S ribosomal RNA (rRNA) gene sequences demonstrated that bacterial phylogenetic diversity was high in the dust samples, and most of these were environmental bacteria distributed in soil and air. The dominant species in the clone library was Segetibacter aerophilus (Bacteroidetes), which was first isolated from an Asian dust sample collected in Korea. Our results also indicate the possibility of a change in the bacterial community structure during transportation and increases in desiccation-tolerant bacteria such as Firmicutes.


Ecological Research | 2011

Environmental disease: environmental alteration and infectious disease

Nobuyasu Yamaguchi; Tomoaki Ichijo; Masao Nasu

Humans have changed their environment to survive and to achieve a safer and more comfortable life. For example, drinking water and wastewater infrastructures are indispensable for civilized societies to flourish and to prevent water-borne infectious diseases. However, excessive loading on environments might disturb microbial ecosystems, resulting in outbreaks of pathogenic microbes and the expansion of infectious diseases. Clarifying the relationship between environmental alterations and changes in microbial ecosystems is thus important to prevent further outbreaks of infectious diseases. The present study aims to understand the links between the following factors: environmental alterations; ecosystem disturbance and the occurrence of infectious disease; and impact on society. We focus on legionellosis and nontuberculous mycobacterial diseases from the viewpoint of their environmental linkage. While Legionella spp. are ubiquitous in aquatic environments, Legionella pneumophila often increases in anthropogenic environments, such as cooling towers or spas, and can cause outbreaks of legionellosis. Recently, travel-associated Legionnaires’ disease has caused concern in many countries. The numbers of patients infected with nontuberculous Mycobacteria (NTM) have increased worldwide since the 1990s. Disturbances to microbial ecosystems caused by changes in water usage might be one cause of NTM diseases. Clarifying the dynamics of Legionella pneumophila and NTM in aquatic environments should help prevent outbreaks of diseases associated with these bacteria.

Collaboration


Dive into the Tomoaki Ichijo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuji Tani

Osaka Ohtani University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumiaki Tanigaki

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge