Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoaki Nagai is active.

Publication


Featured researches published by Tomoaki Nagai.


Journal of Cell Biology | 2011

Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension.

Tai Kiuchi; Tomoaki Nagai; Kazumasa Ohashi; Kensaku Mizuno

The cytoplasmic concentration of G-actin is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension.


Journal of Cell Science | 2013

Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase

Tomoaki Nagai; Masanori Ikeda; Shuhei Chiba; Shin-ichiro Kanno; Kensaku Mizuno

Summary The structure and function of microtubules (MTs) are regulated by post-translational modifications of tubulin subunits, such as acetylation of the Lys40 residue of &agr;-tubulin. Regulation of the organization and dynamics of MTs is essential for the precise formation of the mitotic spindle. Spindle MTs are highly acetylated, but the mechanism regulating this acetylation is largely unknown. Furry (Fry) is an evolutionarily conserved protein that binds to MTs and colocalizes with acetylated MTs in the mitotic spindle. In this study, we examined the role of Fry in the acetylation of MTs in the mitotic spindle. Depletion of Fry significantly reduced the level of MT acetylation in the mitotic spindle. Expression of the N-terminal fragment of Fry induced hyperacetylation of MTs in both mitotic and interphase cells. These results indicate that Fry promotes MT acetylation in the mitotic spindle. We also found that Fry binds to the tubulin deacetylase SIRT2, preferentially in mitotic cells. Cell-free experiments revealed that the N-terminal region of Fry is the domain responsible for binding to and inhibiting the tubulin-deacetylase activity of SIRT2. AGK2, a specific inhibitor of SIRT2, increased the level of MT acetylation in the mitotic spindle, indicating that SIRT2 is involved in the deacetylation of spindle MTs. Furthermore, AGK2 reversed the decrease in MT acetylation induced by Fry depletion. In summary, these results suggest that Fry plays a crucial role in promoting the level of MT acetylation in the mitotic spindle by inhibiting the tubulin-deacetylase activity of SIRT2.


Genes to Cells | 2014

Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis.

Toshiaki Oda; Shuhei Chiba; Tomoaki Nagai; Kensaku Mizuno

Primary cilia are formed by extending the microtubule‐based axoneme from the mother centriole‐derived basal body. Recruitment of Tau tubulin kinase‐2 (TTBK2) to the mother centriole and subsequent removal of CP110 and its interactor Cep97 are crucial for the initiation of ciliogenesis. We analyzed the roles of two TTBK2‐binding proteins, EB1 and Cep164, in centriolar localization of TTBK2. TTBK2 bound EB1 and Cep164 through its SxIP motifs and a proline‐rich motif, respectively. Using TTBK2 variants that contained mutations in the SxIP or proline‐rich motifs, we obtained evidence that Cep164, but not EB1, is essential for centriolar localization of TTBK2. Depletion of TTBK2 inhibited CP110 removal and ciliogenesis, whereas expression of wild‐type TTBK2, but not non‐Cep164‐binding mutants, rescued CP110 removal and ciliogenesis in TTBK2‐depleted cells. Therefore, Cep164 binding is essential for the function of TTBK2 in promoting CP110 removal and ciliogenesis. We also provide evidence that TTBK2 has the potential to effectively phosphorylate Cep164 and Cep97 and inhibits the interaction between Cep164 and its binding partner Dishevelled‐3 (an important regulator of ciliogenesis) in a kinase activity‐dependent manner.


Bioarchitecture | 2011

Live-cell imaging of G-actin dynamics using sequential FDAP

Tai Kiuchi; Tomoaki Nagai; Kazumasa Ohashi; Kensaku Mizuno

Various microscopic techniques have been developed to understand the mechanisms that spatiotemporally control actin filament dynamics in live cells. Kinetic data on the processes of actin assembly and disassembly on F-actin have been accumulated. However, the kinetics of cytoplasmic G-actin, a key determinant for actin polymerization, has remained unclear because of a lack of appropriate methods to measure the G-actin concentration quantitatively. We have developed two new microscopic techniques based on the fluorescence decay after photoactivation (FDAP) time-lapse imaging of photoswitchable Dronpa-labeled actin. These techniques, sequential FDAP (s-FDAP) and multipoint FDAP, were used to measure the time-dependent changes in and spatial distribution of the G-actin concentration in live cells. Use of s-FDAP provided data on changes in the G-actin concentration with high temporal resolution; these data were useful for the model analysis of actin assembly processes in live cells. The s-FDAP analysis also provided evidence that the cytoplasmic G-actin concentration substantially decreases after cell stimulation and that the extent of stimulus-induced actin assembly and cell size extension are linearly correlated with the G-actin concentration before cell stimulation. The advantages of using s-FDAP and multipoint FDAP to measure spatiotemporal G-actin dynamics and the roles of G-actin concentration and ADF/cofilin in stimulus-induced actin assembly and lamellipodium extension in live cells are discussed.


Journal of Biochemistry | 2014

Multifaceted roles of Furry proteins in invertebrates and vertebrates.

Tomoaki Nagai; Kensaku Mizuno

Furry (Fry) is a large protein that is evolutionarily conserved from yeast to human. Fry and its orthologues in invertebrates (termed Tao3p in budding yeast, Mor2p in fission yeast, Sax-2 in nematode and Fry in fruit fly) genetically and physically interact with nuclear Dbf2-related (NDR) kinases (termed Cbk1p in budding yeast, Orb6p in fission yeast, Sax-1 in nematode and Trc in fruitfly), and function as activators or scaffolds of these kinases. Fry-NDR kinase signals are implicated in the control of polarized cell growth and morphogenesis in yeast, neurite outgrowth in nematode, and epidermal morphogenesis and dendritic tiling in fruit fly. Recent studies revealed that mammalian Fry is a microtubule-associated protein that is involved in the control of chromosome alignment, spindle organization and Polo-like kinase-1 activation in mitosis, and promotes microtubule acetylation in mitotic spindles via inhibiting the tubulin deacetylase Sirtuin 2. Here, we review current knowledge about the diverse cellular functions and regulation of Fry proteins in invertebrates and vertebrates.


Cancer Research | 2016

Pharmacological inhibition of centrosome clustering by slingshot-mediated cofilin activation and actin cortex destabilization.

Gleb Konotop; Elena Bausch; Tomoaki Nagai; Andrey Turchinovich; Natalia Becker; Axel Benner; Michael Boutros; Kensaku Mizuno; Alwin Krämer; Marc S. Raab

Centrosome amplification is a hallmark of virtually all types of cancers, including solid tumors and hematologic malignancies. Cancer cells with extra centrosomes use centrosome clustering (CC) to allow for successful division. Because normal cells do not rely on this mechanism, CC is regarded as a promising target to selectively eradicate cells harboring supernumerary centrosomes. To identify novel inhibitors of CC, we developed a cell-based high-throughput screen that reports differential drug cytotoxicity for isogenic cell populations with different centrosome contents. We identified CP-673451 and crenolanib, two chemically related compounds originally developed for the inhibition of platelet-derived growth factor receptor β (PDGFR-β), as robust inhibitors of CC with selective cytotoxicity for cells with extra centrosomes. We demonstrate that these compounds induce mitotic spindle multipolarity by activation of the actin-severing protein cofilin, leading to destabilization of the cortical actin network, and provide evidence that this activation is dependent on slingshot phosphatases 1 and 2 but unrelated to PDGFR-β inhibition. More specifically, we found that although both compounds attenuated PDGF-BB-induced signaling, they significantly enhanced the phosphorylation of PDGFR-β downstream effectors, Akt and MEK, in almost all tested cancer cell lines under physiologic conditions. In summary, our data reveal a novel mechanism of CC inhibition depending on cofilin-mediated cortical actin destabilization and identify two clinically relevant compounds interfering with this tumor cell-specific target. Cancer Res; 76(22); 6690-700. ©2016 AACR.


Biochemical and Biophysical Research Communications | 2017

A pleckstrin homology-like domain is critical for F-actin binding and cofilin-phosphatase activity of Slingshot-1

Katsunori Takahashi; Haruka Okabe; Shin-ichiro Kanno; Tomoaki Nagai; Kensaku Mizuno

Slingshot-1 (SSH1) is a protein phosphatase that specifically dephosphorylates and activates cofilin, an F-actin-severing protein. SSH1 binds to and co-localizes with F-actin, and the cofilin-phosphatase activity of SSH1 is markedly increased by binding to F-actin. In this study, we performed a secondary structure analysis of SSH1, which predicted the existence of a pleckstrin homology (PH)-like domain in the N-terminal region of SSH1. SSH1 also contains a DEK-C domain in the N-terminal region. The N-terminal fragment of SSH1 bound to and co-localized with F-actin, but mutation at Arg-96 or a Leu-His-Lys (LHK) motif in the PH-like domain reduced this activity. Furthermore, mutation at Arg-96 abrogated the cofilin-phosphatase activity of SSH1 in the presence of F-actin. These results suggest that the N-terminal PH-like domain plays a critical role in F-actin binding and F-actin-mediated activation of the cofilin-phosphatase activity of SSH1.


Journal of Cell Science | 2018

Glucose deprivation induces primary cilium formation through mTORC1 inactivation

Kengo Takahashi; Tomoaki Nagai; Shuhei Chiba; Keiko Nakayama; Kensaku Mizuno

ABSTRACT Primary cilia are antenna-like sensory organelles extending from the surface of many cell types that play critical roles in tissue development and homeostasis. Here, we examined the effect of nutrient status on primary cilium formation. Glucose deprivation significantly increased the number of ciliated cells under both serum-fed and -starved conditions. Glucose deprivation-induced ciliogenesis was suppressed by overexpression of Rheb, an activator of the mammalian target of rapamycin complex-1 (mTORC1). Inactivating mTORC1 by rapamycin treatment or Raptor knockdown significantly promoted ciliogenesis. These results indicate that glucose deprivation promotes primary cilium formation through mTORC1 inactivation. Rapamycin treatment did not promote autophagy or degradation of OFD1, a negative regulator of ciliogenesis. In contrast, rapamycin treatment increased the level of the p27KIP1 (also known as CDKN1B) cyclin-dependent kinase inhibitor, and rapamycin-induced ciliogenesis was abrogated in p27KIP1-depleted cells. These results indicate that mTORC1 inactivation induces ciliogenesis through p27KIP1 upregulation, but not through autophagy. By contrast, glucose deprivation or rapamycin treatment shortened the cilium length. Thus, glucose deprivation and subsequent inactivation of mTORC1 play dual roles in ciliogenesis: triggering primary cilium formation and shortening cilium length. This article has an associated First Person interview with the first author of the paper. Summary: Glucose deprivation promotes primary cilium formation through mTORC1 inactivation. The cell cycle inhibitor p27KIP1, which is upregulated upon mTORC1 inactivation, plays a crucial role in rapamycin-induced ciliogenesis.


PLOS ONE | 2017

Jasplakinolide induces primary cilium formation through cell rounding and YAP inactivation

Tomoaki Nagai; Kensaku Mizuno

Primary cilia are non-motile cilia that serve as cellular antennae for sensing and transducing extracellular signals. In general, primary cilia are generated by cell quiescence signals. Recent studies have shown that manipulations to increase actin assembly suppress quiescence-induced ciliogenesis. To further examine the role of actin dynamics in ciliogenesis, we analyzed the effect of jasplakinolide (Jasp), a potent inducer of actin polymerization, on ciliogenesis. Unexpectedly, Jasp treatment induced ciliogenesis in serum-fed cells cultured at low density. In contrast, Jasp had no apparent effect on ciliogenesis in cells cultured at higher densities. Jasp-induced ciliogenesis was correlated with a change in cell morphology from a flat and adherent shape to a round and weakly adherent one. Jasp treatment also induced the phosphorylation and cytoplasmic localization of the YAP transcriptional co-activator and suppressed cell proliferation in low density-cultured cells. Overexpression of an active form of YAP suppressed Jasp-induced ciliogenesis. These results suggest that Jasp induces ciliogenesis through cell rounding and cytoplasmic localization and inactivation of YAP. Knockdown of LATS1/2 only faintly suppressed Jasp-induced YAP phosphorylation, indicating that LATS1/2 are not primarily responsible for Jasp-induced YAP phosphorylation. Furthermore, overexpression of active Src kinase suppressed Jasp-induced cytoplasmic localization of YAP and ciliogenesis, suggesting that down-regulation of Src activity is involved in Jasp-induced YAP inactivation and ciliogenesis. Our data suggest that actin polymerization does not suppress ciliogenesis per se but rather that cell rounding and reduced cell adhesion are more crucially involved in Jasp-induced ciliogenesis.


Journal of Biological Chemistry | 2017

Localization of Protein Kinase NDR2 to Peroxisomes and Its Role in Ciliogenesis

Shoko Abe; Tomoaki Nagai; Moe Masukawa; Kanji Okumoto; Yuta Homma; Yukio Fujiki; Kensaku Mizuno

Nuclear Dbf2-related (NDR) kinases, comprising NDR1 and NDR2, are serine/threonine kinases that play crucial roles in the control of cell proliferation, apoptosis, and morphogenesis. We recently showed that NDR2, but not NDR1, is involved in primary cilium formation; however, the mechanism underlying their functional difference in ciliogenesis is unknown. To address this issue, we examined their subcellular localization. Despite their close sequence similarity, NDR2 exhibited punctate localization in the cytoplasm, whereas NDR1 was diffusely distributed within the cell. Notably, NDR2 puncta mostly co-localized with the peroxisome marker proteins, catalase and CFP-SKL (cyan fluorescent protein carrying the C-terminal typical peroxisome-targeting signal type-1 (PTS1) sequence, Ser-Lys-Leu). NDR2 contains the PTS1-like sequence, Gly-Lys-Leu, at the C-terminal end, whereas the C-terminal end of NDR1 is Ala-Lys. An NDR2 mutant lacking the C-terminal Leu, NDR2(ΔL), exhibited almost diffuse distribution in cells. Additionally, NDR2, but neither NDR1 nor NDR2(ΔL), bound to the PTS1 receptor Pex5p. Together, these findings indicate that NDR2 localizes to the peroxisome by using the C-terminal GKL sequence. Intriguingly, topology analysis of NDR2 suggests that NDR2 is exposed to the cytosolic surface of the peroxisome. The expression of wild-type NDR2, but not NDR2(ΔL), recovered the suppressive effect of NDR2 knockdown on ciliogenesis. Furthermore, knockdown of peroxisome biogenesis factor genes (PEX1 or PEX3) partially suppressed ciliogenesis. These results suggest that the peroxisomal localization of NDR2 is implicated in its function to promote primary cilium formation.

Collaboration


Dive into the Tomoaki Nagai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge