Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoaki Nishida is active.

Publication


Featured researches published by Tomoaki Nishida.


Chemosphere | 2001

Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes

Yuji Tsutsumi; Takashi Haneda; Tomoaki Nishida

Bisphenol A (BPA) and nonylphenol (NP) were treated with manganese peroxidase (MnP) and laccase prepared from the culture of lignin-degrading fungi. Laccase in the presence of 1-hydroxybenzotriazole (HBT), the so-called laccase-mediator system, was also applied to remove the estrogenic activity. Both chemicals disappeared in the reaction mixture within a 1-h treatment with MnP but the estrogenic activities of BPA and NP still remained 40% and 60% in the reaction mixtures after a 1-h and a 3-h treatment, respectively. Extension of the treatment time to 12 h completed the removal of estrogenic activities of BPA and NP. The laccase has less ability to remove these activities than MnP, but the laccase-HBT system was able to remove the activities in 6 h. A gel permeation chromatography (GPC) analysis revealed that main reaction products of BPA and NP may be oligomers formed by the action of enzymes. Enzymatic treatments extended to 48 h did not regenerate the estrogenic activities, suggesting that the ligninolytic enzymes are effective for the removal of the estrogenic activities of BPA and NP.


Water Research | 2003

Removal of estrogenic activities of 17β-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi

Kazutaka Suzuki; Hirofumi Hirai; Hitoshi Murata; Tomoaki Nishida

We investigated whether manganese peroxidase (MnP) and the laccase-mediator system with 1-hydroxybenzotriazole (HBT) as mediator can remove the estrogenic activities of the steroidal hormones 17beta-estradiol (E(2)) and ethinylestradiol (EE(2)). Using the yeast two-hybrid assay system, we confirmed that the estrogenic activities of E(2) and EE(2) are much higher than those of bisphenol A and nonylphenol. Greater than 80% of the estrogenic activities of E(2) and EE(2) were removed following 1-h treatment with MnP or the laccase-HBT system; extending the treatment time to 8h removed the remaining estrogenic activity of both steroidal hormones. HPLC analysis demonstrated that E(2) and EE(2) had disappeared almost completely in the reaction mixture after a 1-h treatment. These results strongly suggest that these ligninolytic enzymes are effective in removing the estrogenic activities of E(2) and EE(2).


FEBS Letters | 2004

Lignin dehydrogenative polymerization mechanism : a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in β-O-4 linkage

Shinya Sasaki; Tomoaki Nishida; Yuji Tsutsumi; Ryuichiro Kondo

An investigation was performed to determine whether lignin dehydrogenative polymerization proceeds via radical mediation or direct oxidation by peroxidases. It was found that coniferyl alcohol radical transferred quickly to sinapyl alcohol. The transfer to syringaresinol was slower, however, the transfer to polymeric lignols occurred very slightly. This result suggests that the radical mediator theory does not sufficiently explain the mechanism for dehydrogenative polymerization of lignin. A cationic cell wall peroxidase (CWPO‐C) from poplar (Populus alba L.) callus showed a strong substrate preference for sinapyl alcohol and the sinapyl alcohol dimer, syringaresinol. Moreover, CWPO‐C was capable of oxidizing high‐molecular‐weight sinapyl alcohol polymers and ferrocytochrome c. Therefore, the CWPO‐C characteristics are important to produce polymer lignin. The results suggest that CWPO‐C may be a peroxidase isoenzyme responsible for the lignification of plant cell walls.


Journal of Hazardous Materials | 2010

Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole

Takayuki Hata; Hideaki Shintate; Shingo Kawai; Hideo Okamura; Tomoaki Nishida

Carbamazepine (CBZP) is used as an antiepileptic drug and is highly persistent. In this study, CBZP was treated with laccase from white rot fungus Trametes versicolor in the presence of a redox mediator 1-hydroxybenzotriazole (HBT). A single treatment with laccase and HBT eliminated CBZP by about 22% after 24h, and repeated treatments with laccase and HBT, which were added to the reaction mixture every 8h, helped eliminate about 60% of CBZP after 48h. This suggests that repeated treatment is effective in eliminating CBZP. Mass spectrometric analyses demonstrated that two degradation products of CBZP, 10,11-dihydro-10,11-epoxycarbamazepine and 9(10H)-acridone, were formed via repeated treatment with laccase and HBT.


Bioresource Technology | 2012

Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole

Tomoyo Suda; Takayuki Hata; Shingo Kawai; Hideo Okamura; Tomoaki Nishida

Tetracycline antibiotics are widely used in human and veterinary medicine; however, residual amounts of these antibiotics in the environment are of concern since they could contribute to selection of resistant bacteria. In this study, tetracycline (TC), chlortetracycline (CTC), doxycycline (DC) and oxytetracycline (OTC) were treated with laccase from the white rot fungus Trametes versicolor in the presence of the redox mediator 1-hydroxybenzotriazole (HBT). High performance liquid chromatography demonstrated that DC and CTC were completely eliminated after 15 min, while TC and CTC were eliminated after 1 h. This system also resulted in a complete loss of inhibition of growth of Escherichia coli and Bacillus subtilis and the green alga Pseudokirchneriella subcapitata with decreasing tetracycline antibiotic concentration. These results suggest that the laccase-HBT system is effective in eliminating tetracycline antibiotics and removing their ecotoxicity.


Journal of Wood Science | 1998

Polyethylene degradation by lignin-degrading fungi and manganese peroxidase

Yuka Iiyoshi; Yuji Tsutsumi; Tomoaki Nishida

Degradation of high-molecular-weight polyethylene membrane by lignin-degrading fungi, IZU-154, Phanerochaete chrysosporium, and Trametes versicolor, was investigated under various nutritional conditions. IZU-154 showed the most significant polyethylene degradation among the three lignin-degrading fungi under nitrogen- or carbon-limited culture conditions. Furthermore, for T. versicolor and P. chrysosporium, the addition of Mn(II) into nitrogen- or carbon-limited culture medium enhanced polyethylene degradation. These results suggest that polyethylene degradation is related to ligninolytic activity of lignin-degrading fungi. Treatment of polyethylene membrane with partially purified manganese peroxidase (MnP) caused significant degradation in the presence of Tween 80, Mn(II), and Mn(III) chelator. This result demonstrates that MnP is the key enzyme in polyethylene degradation by lignin-degrading fungi.


Journal of Wood Science | 2002

Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol

Wataru Aoyama; Shinya Sasaki; Shigeki Matsumura; Thoru Mitsunaga; Hirofumi Hirai; Yuji Tsutsumi; Tomoaki Nishida

Two peroxidases, CWPO-A and CWPO-C, were isolated from the cell walls of poplar (Populus alba L.) callus culture. The cationic CWPO-C showed a strong preference for sinapyl alcohol over coniferyl alcohol as substrate. Thus, the monolignol utilization of CWPO-C is unique compared with other peroxidases, including anionic CWPO-A and horseradish peroxidase (HRP). CWPO-C polymerized oligomeric sinapyl alcohol (S-oligo) and sinapyl alcohol, producing a polymer of greater molecular weight. In contrast, HRP, which is specific to coniferyl alcohol, produced sinapyl alcohol dimers, rather than catalyzing polymerization. Adding coniferyl alcohol as a radical mediator in the HRP-mediated reaction did not result in S-oligo polymerization. This report shows that CWPO-C is an isoenzyme specific to sinapyl alcohol that polymerizes oligomeric lignols. Its catalytic activity toward oligomeric lignols may be related to the lignification of angiosperm woody plant cell walls.


Journal of Hazardous Materials | 2010

Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus.

Yukiko Inoue; Takayuki Hata; Shingo Kawai; Hideo Okamura; Tomoaki Nishida

The antimicrobial and preservative agent triclosan (TCS) is an emerging and persistent pollutant with a ubiquitous presence in the aquatic environment. Thus, TCS was treated with manganese peroxidase (MnP), laccase and the laccase-mediator system with 1-hydroxybenzotriazole. MnP was most effective in eliminating TCS among the three enzymatic treatments, with TCS concentration being reduced by about 94% after 30 min following treatment with 0.5 nkat mL(-1) MnP and being almost completely eliminated after 60 min. Furthermore, MnP (0.5 nkat mL(-1)) caused the complete loss of bacterial growth inhibition by TCS after 30 min and reduced the algal growth inhibition of TCS by 75% and 90% after 30 and 60 min, respectively. These results strongly suggest that MnP is effective in removing the ecotoxicity of TCS.


Fems Microbiology Letters | 2003

Purification and characterization of a novel lignin peroxidase from white-rot fungus Phanerochaete sordida YK-624

Mutsumi Sugiura; Hirofumi Hirai; Tomoaki Nishida

We characterized kinetics and substrate oxidation of a novel lignin peroxidase (YK-LiP) isolated from white-rot fungus Phanerochaete sordida YK-624. YK-LiP enzyme was identified and purified to homogeneity by anion-exchange chromatography and gel permeation chromatography. The molecular mass of YK-LiP was approximately 50 kDa, and the absorption spectrum of YK-LiP was almost the same as that of the LiP (Pc-LiP) from Phanerochaete chrysosporium. Steady-state kinetics of veratryl alcohol oxidation by YK-LiP (unlike that by Pc-LiP) revealed a bi-reactant sequential mechanism, although reactivity of YK-LiP to various monomeric substituted aromatic compounds was similar to that of Pc-LiP. Degradation of dimeric lignin model compounds was more effective by YK-LiP than by Pc-LiP, and the oxidation rate of sinapyl alcohol oligomer by YK-LiP was much faster than that by Pc-LiP.


Plant Molecular Biology | 2006

The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L

Shinya Sasaki; Kei’ichi Baba; Tomoaki Nishida; Yuji Tsutsumi; Ryuichiro Kondo

Previously we reported that purified Cell Wall Peroxidase-Cationic (CWPO-C) from poplar callus (Populus alba L.) oxidizes sinapyl alcohol and polymeric substrate unlike other plant peroxidases and proposed that this isoenzyme is a conceivable lignification specific peroxidase. In this study, we cloned full-length cDNA of CWPO-C and investigated the transcription of CWPO-C gene in various organs and the localization of CWPO-C protein in the differentiating xylem of poplar stem.Real-time PCR analyses indicated that CWPO-C gene is constitutively expressed in the developing xylem, leaf, and shoot but not affected by many stress treatments. Immunohistochemical analysis showed that CWPO-C locates in the middle lamellae, cell corners, and secondary cell walls of the fiber cells during the lignification. The intensity of the CWPO-C labeling increased gradually from the cell wall thickening stage to mature stage of fiber cells, which is very consistent with the increase of lignin content in the developing xylem. These results strongly support that CWPO-C is responsible for the lignification of the secondary xylem. Interestingly, immuno-labeling of CWPO-C was also observed inside of the ray parenchyma cells instead no signals were detected within the developing fiber cells. This suggests that CWPO-C is biosynthesized in the parenchyma cells and provided to the middle lamellae, the cell corners, and the cell walls to achieve lignin polymerization.

Collaboration


Dive into the Tomoaki Nishida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge