Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomohiko Fukuda is active.

Publication


Featured researches published by Tomohiko Fukuda.


FEBS Journal | 2008

Branched N-glycans regulate the biological functions of integrins and cadherins

Yanyang Zhao; Yuya Sato; Tomoya Isaji; Tomohiko Fukuda; Akio Matsumoto; Eiji Miyoshi; Jianguo Gu; Naoyuki Taniguchi

Glycosylation is one of the most common post‐translational modifications, and approximately 50% of all proteins are presumed to be glycosylated in eukaryotes. Branched N‐glycans, such as bisecting GlcNAc, β‐1,6‐GlcNAc and core fucose (α‐1,6‐fucose), are enzymatic products of N‐acetylglucosaminyltransferase III, N‐acetylglucosaminyltransferase V and α‐1,6‐fucosyltransferase, respectively. These branched structures are highly associated with various biological functions of cell adhesion molecules, including cell adhesion and cancer metastasis. E‐cadherin and integrins, bearing N‐glycans, are representative adhesion molecules. Typically, both are glycosylated by N‐acetylglucosaminyltransferase III, which inhibits cell migration. In contrast, integrins glycosylated by N‐acetylglucosaminyltransferase V promote cell migration. Core fucosylation is essential for integrin‐mediated cell migration and signal transduction. Collectively, N‐glycans on adhesion molecules, especially those on E‐cadherin and integrins, play key roles in cell–cell and cell–extracellular matrix interactions, thereby affecting cancer metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Transcriptome-based systematic identification of extracellular matrix proteins

Ri-ichiroh Manabe; Ko Tsutsui; Tomiko Yamada; Mina Kimura; Itsuko Nakano; Chisei Shimono; Noriko Sanzen; Yutaka Furutani; Tomohiko Fukuda; Yasuko Oguri; Keiko Shimamoto; Daiji Kiyozumi; Yuya Sato; Yoshikazu Sado; Haruki Senoo; Shohei Yamashina; Shiro Fukuda; Jun Kawai; Nobuo Sugiura; Koji Kimata; Yoshihide Hayashizaki; Kiyotoshi Sekiguchi

Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized ECMs, however, have not been elucidated. Here, we describe a strategy for transcriptome-wide identification of ECM proteins based on computational screening of >60,000 full-length mouse cDNAs for secreted proteins, followed by in vitro functional assays. These assays screened the candidate proteins for ECM-assembling activities, interactions with other ECM molecules, modifications with glycosaminoglycans, and cell-adhesive activities, and were then complemented with immunohistochemical analysis. We identified 16 ECM proteins, of which seven were localized in basement membrane (BM) zones. The identification of these previously unknown BM proteins allowed us to construct a body map of BM proteins, which represents the comprehensive immunohistochemistry-based expression profiles of the tissue-specific customization of BMs.


Glycoconjugate Journal | 2012

Potential roles of N-glycosylation in cell adhesion

Jianguo Gu; Tomoya Isaji; Qingsong Xu; Yoshinobu Kariya; Wei Gu; Tomohiko Fukuda; Yuguang Du

The functional units of cell adhesion are typically multiprotein complexes made up of three general classes of proteins; the adhesion receptors, the cell-extracellular matrix (ECM) proteins, and the cytoplasmic plaque/peripheral membrane proteins. The cell adhesion receptors are usually transmembrane glycoproteins (for example E-cadherin and integrin) that mediate binding at the extracellular surface and determine the specificity of cell-cell and cell-ECM recognition. E-cadherin-mediated cell-cell adhesion can be both temporally and spatially regulated during development, and represents a key step in the acquisition of the invasive phenotype for many tumors. On the other hand, integrin-mediated cell-ECM interactions play important roles in cytoskeleton organization and in the transduction of intracellular signals to regulate various processes such as proliferation, differentiation and cell migration. ECM proteins are typically large glycoproteins, including the collagens, fibronectins, laminins, and proteoglycans that assemble into fibrils or other complex macromolecular arrays. The most of these adhesive proteins are glycosylated. Here, we focus mainly on the modification of N-glycans of integrins and laminin-332, and a mutual regulation between cell adhesion and bisected N-glycan expression, to address the important roles of N-glycans in cell adhesion.


Molecular and Cellular Biology | 2004

Direct Test of Potential Roles of EIIIA and EIIIB Alternatively Spliced Segments of Fibronectin in Physiological and Tumor Angiogenesis

Sophie Astrof; Denise Crowley; Elizabeth George; Tomohiko Fukuda; Kiyotoshi Sekiguchi; Douglas Hanahan; Richard O. Hynes

ABSTRACT Fibronectin splice variants containing the EIIIA and/or EIIIB exons are prominently expressed in the vasculature of a variety of human tumors but not in normal adult tissues. To understand the functions of these splice variants in physiological and tumor angiogenesis, we used EIIIB-null and EIIIA-null strains of mice to examine neovascularization of mouse retinas, pancreatic tumors in Rip-Tag transgenic mice, and transplanted melanomas. Contrary to expectations, physiological and tumor angiogenesis was not significantly affected by the absence of either EIIIA or EIIIB splice variants. Tumor growth was also not affected. In addition, the expression levels of smooth muscle alpha actin, believed to be modulated by EIIIA-containing fibronectins, were not affected either. Our experiments show that despite their tight regulation during angiogenesis, the presence of EIIIA or EIIIB splice variants individually is not essential for neovascularization.


Journal of Biological Chemistry | 2009

N-Glycosylation of the I-like Domain of β1 Integrin Is Essential for β1 Integrin Expression and Biological Function: IDENTIFICATION OF THE MINIMAL N-GLYCOSYLATION REQUIREMENT FOR α5β1*

Tomoya Isaji; Yuya Sato; Tomohiko Fukuda; Jianguo Gu

N-Glycosylation of integrin alpha5beta1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (alpha5S3-5) on the beta-propeller of the alpha5 subunit are essential to the functional expression of the subunit. In particular, site 5 (alpha5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin beta1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the beta1 subunit (i.e. the Delta4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the beta1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either alpha5S3-5 or alpha5S5 mutant of the alpha5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the beta1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the alpha5S3-5/beta1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the beta1 subunit, it might also be useful for the study of molecular structures.N-Glycosylation of integrin α5β1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (α5S3–5) on the β-propeller of the α5 subunit are essential to the functional expression of the subunit. In particular, site 5 (α5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin β1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the β1 subunit (i.e. the Δ4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the β1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either α5S3-5 or α5S5 mutant of the α5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the β1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the α5S3-5/β1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the β1 subunit, it might also be useful for the study of molecular structures.


Journal of Biological Chemistry | 2012

Roles of N-Acetylglucosaminyltransferase III in Epithelial-to-Mesenchymal Transition Induced by Transforming Growth Factor β1 (TGF-β1) in Epithelial Cell Lines

Qingsong Xu; Tomoya Isaji; Yingying Lu; Wei Gu; Madoka Kondo; Tomohiko Fukuda; Yuguang Du; Jianguo Gu

Background: The inhibitory effects of GnT-III on cancer metastasis remain unclear. Results: GnT-III influenced EMT-like changes through not only prolongation of E-cadherin turnover but also suppression of β-catenin·p-Smad complex formation. Conclusion: GnT-III plays important roles in TGF-β-induced EMT-like changes. Significance: The expression of E-cadherin is regulated not only by transcriptional factors but also by post-transcriptional modifications. The epithelial-to-mesenchymal transition (EMT) plays crucial roles in embryonic development, wound healing, tissue repair, and cancer progression. Results of this study show how transforming growth factor β1 (TGF-β1) down-regulates expression of N-acetylglucosaminyltransferase III (GnT-III) during EMT-like changes. Treatment with TGF-β1 resulted in a decrease in E-cadherin expression and GnT-III expression, as well as its product, the bisected N-glycans, which was confirmed by erythro-agglutinating phytohemagglutinin lectin blot and HPLC analysis in human MCF-10A and mouse GE11 cells. In contrast with GnT-III, the expression of N-acetylglucosaminyltransferase V was slightly enhanced by TGF-β1 treatment. Changes in the N-glycan patterns on α3β1 integrin, one of the target proteins for GnT-III, were also confirmed by lectin blot analysis. To understand the roles of GnT-III expression in EMT-like changes, the MCF-10A cell was stably transfected with GnT-III. It is of particular interest that overexpression of GnT-III influenced EMT-like changes induced by TGF-β1, which was confirmed by cell morphological changes of phase contrast, immunochemical staining patterns of E-cadherin, and actin. In addition, GnT-III modified E-cadherin, which served to prolong E-cadherin turnover on the cell surface examined by biotinylation and pulse-chase experiments. GnT-III expression consistently inhibited β-catenin translocation from cell-cell contact into the cytoplasm and nucleus. Furthermore, the transwell assay showed that GnT-III expression suppressed TGF-β1-induced cell motility. Taken together, these observations are the first to clearly demonstrate that GnT-III affects cell properties, which in turn influence EMT-like changes, and to explain a molecular mechanism for the inhibitory effects of GnT-III on cancer metastasis.


Journal of Proteome Research | 2009

A Mutual Regulation between Cell−Cell Adhesion and N-Glycosylation: Implication of the Bisecting GlcNAc for Biological Functions

Jianguo Gu; Yuya Sato; Yoshinobu Kariya; Tomoya Isaji; Naoyuki Taniguchi; Tomohiko Fukuda

Changes in oligosaccharide structures are associated with numerous physiological and pathological events. E-cadherin-mediated cell-cell adhesion is believed to be both temporally and spatially regulated during development, and represents a key step in the acquisition of the invasive phenotype for many tumors. Here, we focus mainly on a mutual regulation between E-cadherin-mediated cell-cell adhesion and N-acetylglucosaminyltransferase III (GnT-III) expression, and discuss its implications for biological functions.


Journal of Biological Chemistry | 2009

An N-Glycosylation Site on theβ-Propeller Domain of the Integrin α5 Subunit Plays Key Roles in Both Its Function and Site-specific Modification byβ1,4-N-Acetylglucosaminyltransferase III

Yuya Sato; Tomoya Isaji; Michiko Tajiri; Shumi Yoshida-Yamamoto; Tsuyoshi Yoshinaka; Toshiaki Somehara; Tomohiko Fukuda; Yoshinao Wada; Jianguo Gu

Recently we reported that N-glycans on the β-propeller domain of the integrin α5 subunit (S-3,4,5) are essential for α5β1 heterodimerization, expression, and cell adhesion. Herein to further investigate which N-glycosylation site is the most important for the biological function and regulation, we characterized the S-3,4,5 mutants in detail. We found that site-4 is a key site that can be specifically modified by N-acetylglucosaminyltransferase III (GnT-III). The introduction of bisecting GlcNAc into the S-3,4,5 mutant catalyzed by GnT-III decreased cell adhesion and migration on fibronectin, whereas overexpression of N-acetylglucosaminyltransferase V (GnT-V) promoted cell migration. The phenomenon is similar to previous observations that the functions of the wild-type α5 subunit were positively and negatively regulated by GnT-V and GnT-III, respectively, suggesting that the α5 subunit could be duplicated by the S-3,4,5 mutant. Interestingly GnT-III specifically modified the S-4,5 mutant but not the S-3,5 mutant. This result was confirmed by erythroagglutinating phytohemagglutinin lectin blot analysis. The reduction in cell adhesion was consistently observed in the S-4,5 mutant but not in the S-3,5 mutant cells. Furthermore mutation of site-4 alone resulted in a substantial decrease in erythroagglutinating phytohemagglutinin lectin staining and suppression of cell spread induced by GnT-III compared with that of either the site-3 single mutant or wild-type α5. These results, taken together, strongly suggest that N-glycosylation of site-4 on the α5 subunit is the most important site for its biological functions. To our knowledge, this is the first demonstration that site-specific modification of N-glycans by a glycosyltransferase results in functional regulation.


Journal of Biological Chemistry | 2011

α1,6-Fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems

Tomohiko Fukuda; Hirokazu Hashimoto; Natsumi Okayasu; Akihiko Kameyama; Hiroshi Onogi; Osamu Nakagawasai; Takahiro Nakazawa; Tomoyo Kurosawa; Yan Hao; Tomoya Isaji; Takeshi Tadano; Hisashi Narimatsu; Naoyuki Taniguchi; Jianguo Gu

Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8(-/-)) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8(-/-) mice using a combination of neurological and behavioral tests. Fut8(-/-) mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8(-/-) mice displayed increased locomotion compared with wild-type (Fut8(+/+)) and heterozygous (Fut8(+/-)) mice. In particular, Fut8(-/-) mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8(-/-) mice as evidenced by the Y-maze tests. Furthermore, Fut8(-/-) mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8(+/+) and Fut8(+/-) mice in the PPI test under normal conditions, Fut8(+/-) mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8(-/-) mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.Previously, we reported that α1,6-fucosyltransferase (Fut8)-deficient (Fut8−/−) mice exhibit emphysema-like changes in the lung and severe growth retardation due to dysregulation of TGF-β1 and EGF receptors and to abnormal integrin activation, respectively. To study the role of α1,6-fucosylation in brain tissue where Fut8 is highly expressed, we examined Fut8−/− mice using a combination of neurological and behavioral tests. Fut8−/− mice exhibited multiple behavioral abnormalities consistent with a schizophrenia-like phenotype. Fut8−/− mice displayed increased locomotion compared with wild-type (Fut8+/+) and heterozygous (Fut8+/−) mice. In particular, Fut8−/− mice showed strenuous hopping behavior in a novel environment. Working memory performance was impaired in Fut8−/− mice as evidenced by the Y-maze tests. Furthermore, Fut8−/− mice showed prepulse inhibition (PPI) deficiency. Intriguingly, although there was no significant difference between Fut8+/+ and Fut8+/− mice in the PPI test under normal conditions, Fut8+/− mice showed impaired PPI after exposure to a restraint stress. This result suggests that reduced expression of Fut8 is a plausible cause of schizophrenia and related disorders. The levels of serotonin metabolites were significantly decreased in both the striatum and nucleus accumbens of the Fut8−/− mice. Likewise, treatment with haloperidol, which is an antipsychotic drug that antagonizes dopaminergic and serotonergic receptors, significantly reduced hopping behaviors. The present study is the first to clearly demonstrate that α1,6-fucosylation plays an important role in the brain, and that it might be related to schizophrenia-like behaviors. Thus, the results of the present study provide new insights into the underlying mechanisms responsible for schizophrenia and related disorders.


Journal of Biological Chemistry | 2011

Wnt/beta-Catenin Signaling Down-regulates N-Acetylglucosaminyltransferase III Expression THE IMPLICATIONS OF TWO MUTUALLY EXCLUSIVE PATHWAYS FOR REGULATION

Qingsong Xu; Ryota Akama; Tomoya Isaji; Yingying Lu; Hirokazu Hashimoto; Yoshinobu Kariya; Tomohiko Fukuda; Yuguang Du; Jianguo Gu

In previous studies, we reported that N-acetylglucosaminyltransferase III (GnT-III) activity and the enzyme product, bisected N-glycans, both were induced in cells cultured under dense conditions in an E-cadherin-dependent manner (Iijima, J., Zhao, Y., Isaji, T., Kameyama, A., Nakaya, S., Wang, X., Ihara, H., Cheng, X., Nakagawa, T., Miyoshi, E., Kondo, A., Narimatsu, H., Taniguchi, N., and Gu, J. (2006) J. Biol. Chem. 281, 13038–13046). Furthermore, we found that α-catenin, a component of the E-cadherin-catenin complex, was also required for this induction (Akama, R., Sato, Y., Kariya, Y., Isaji, T., Fukuda, T., Lu, L., Taniguchi, N., Ozawa, M., and Gu, J. (2008) Proteomics 8, 3221–3228). To further explore the molecular mechanism of this regulation, the roles of β-catenin, an essential molecule in both cadherin-mediated cell adhesion and canonical Wnt signaling, were investigated. Unexpectedly, shRNA knockdown of β-catenin resulted in a dramatic increase in GnT-III expression and its product, the bisected N-glycans, which was confirmed by RT-PCR and GnT-III activity and by E4-PHA lectin blot analysis. The induction of GnT-III expression increased bisecting GlcNAc residues on β1 integrin, which led to down-regulation of integrin-mediated cell adhesion and cell migration. Immunostaining showed that nuclear localization of β-catenin was greatly suppressed; intriguingly, the knockdown of β-catenin in the nuclei was more effective than that in cell-cell contacts in the knockdown cells, which was also confirmed by Western blot analysis. Stimulation of the Wnt signaling pathway by the addition of exogenous Wnt3a or BIO, a GSK-3β inhibitor, consistently and significantly inhibited GnT-III expression and its products. Conversely, the inhibition of β-catenin translocation into the nuclei increased GnT-III activation. Taken together, the results of the present study are the first to clearly demonstrate that GnT-III expression may be precisely regulated by the interplay of E-cadherin-catenin complex-mediated cell-cell adhesion and Wnt/β-catenin signaling, which are both crucial in the process of epithelial-mesenchymal transitions in physiological and pathological conditions.In previous studies, we reported that N-acetylglucosaminyltransferase III (GnT-III) activity and the enzyme product, bisected N-glycans, both were induced in cells cultured under dense conditions in an E-cadherin-dependent manner (Iijima, J., Zhao, Y., Isaji, T., Kameyama, A., Nakaya, S., Wang, X., Ihara, H., Cheng, X., Nakagawa, T., Miyoshi, E., Kondo, A., Narimatsu, H., Taniguchi, N., and Gu, J. (2006) J. Biol. Chem. 281, 13038-13046). Furthermore, we found that α-catenin, a component of the E-cadherin-catenin complex, was also required for this induction (Akama, R., Sato, Y., Kariya, Y., Isaji, T., Fukuda, T., Lu, L., Taniguchi, N., Ozawa, M., and Gu, J. (2008) Proteomics 8, 3221-3228). To further explore the molecular mechanism of this regulation, the roles of β-catenin, an essential molecule in both cadherin-mediated cell adhesion and canonical Wnt signaling, were investigated. Unexpectedly, shRNA knockdown of β-catenin resulted in a dramatic increase in GnT-III expression and its product, the bisected N-glycans, which was confirmed by RT-PCR and GnT-III activity and by E4-PHA lectin blot analysis. The induction of GnT-III expression increased bisecting GlcNAc residues on β1 integrin, which led to down-regulation of integrin-mediated cell adhesion and cell migration. Immunostaining showed that nuclear localization of β-catenin was greatly suppressed; intriguingly, the knockdown of β-catenin in the nuclei was more effective than that in cell-cell contacts in the knockdown cells, which was also confirmed by Western blot analysis. Stimulation of the Wnt signaling pathway by the addition of exogenous Wnt3a or BIO, a GSK-3β inhibitor, consistently and significantly inhibited GnT-III expression and its products. Conversely, the inhibition of β-catenin translocation into the nuclei increased GnT-III activation. Taken together, the results of the present study are the first to clearly demonstrate that GnT-III expression may be precisely regulated by the interplay of E-cadherin-catenin complex-mediated cell-cell adhesion and Wnt/β-catenin signaling, which are both crucial in the process of epithelial-mesenchymal transitions in physiological and pathological conditions.

Collaboration


Dive into the Tomohiko Fukuda's collaboration.

Top Co-Authors

Avatar

Jianguo Gu

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Tomoya Isaji

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Qinglei Hang

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sicong Hou

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Wei Gu

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yoshinobu Kariya

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanghun Im

Tohoku Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge