Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomohiko J. Itoh is active.

Publication


Featured researches published by Tomohiko J. Itoh.


Nature Cell Biology | 2002

CRMP-2 binds to tubulin heterodimers to promote microtubule assembly

Yuko Fukata; Tomohiko J. Itoh; Toshihide Kimura; Céline Ménager; Takashi Nishimura; Takashi Shiromizu; Hiroyasu Watanabe; Naoyuki Inagaki; Akihiro Iwamatsu; Hirokazu Hotani; Kozo Kaibuchi

Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.


Journal of Biological Chemistry | 2003

Filament Formation of MSF-A, a Mammalian Septin, in Human Mammary Epithelial Cells Depends on Interactions with Microtubules

Koh-ichi Nagata; Aie Kawajiri; Seiya Matsui; Mihoko Takagishi; Takashi Shiromizu; Noriko Saitoh; Ichiro Izawa; Tohru Kiyono; Tomohiko J. Itoh; Hirokazu Hotani; Masaki Inagaki

Septins are a family of conserved proteins implicated in a variety of cellular functions such as cytokinesis and vesicle trafficking, but their properties and modes of action are largely unknown. Here we now report findings of immunocytochemical and biochemical characterization of a mammalian septin, MSF-A. Using an antibody specific for MSF subfamily proteins, MSF-A was found to be expressed predominantly in mammary human mammary epithelial cells (HMEC). MSF-A was associated with microtubules in interphase HMEC cells as it localized with the mitotic spindle and the bundle of microtubule at midzone during mitosis. Biochemical analysis revealed direct binding of MSF-A with polymerized tubulin through its central region containing guanine nucleotide-interactive motifs. GTPase activity, however, was not required for the association. Conditions that disrupt the microtubule network also disrupted the MSF-A-containing filament structure, resulting in a punctate cytoplasmic pattern. Depletion of MSF-A using small interfering RNAs caused incomplete cell division and resulted in the accumulation of binucleated cells. Unlike Nedd5, an MSF mutant deficient in GTPase activity forms filament indistinguishable from that of the wild type in COS cells. These results strongly suggest that septin filaments may interact not only with actin filaments but also with microtubule networks and that GTPase activity of MSF-A is not indispensable to incorporation of MSF-A into septin filaments.


Journal of Cell Science | 2008

Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics

Maki Yao; Yoshinori Wakamatsu; Tomohiko J. Itoh; Tsubasa Shoji; Takashi Hashimoto

SPIRAL2 (SPR2) of Arabidopsis thaliana is a microtubule-associated protein containing multiple HEAT repeats that are found only in the plant lineage. We show that SPR2 and SP2L, their closest Arabidopsis homolog, are expressed in various tissues with partially overlapping patterns, and spr2-sp2l double mutants exhibit enhanced right-handed helical growth. Fusion to green fluorescent protein (GFP) expressed under the control of the native regulatory elements showed that both SPR2 and SP2L were localized to cortical microtubules, mainly in particles of various sizes. Along the microtubule, the GFP-fused forms also distributed partly at the plus ends. In the spr2-mutant background, cortical microtubules were less dynamic, and the pause state – in which microtubules undergo neither growth nor shrinkage – increased at the plus ends. The continuous plus-end tracking of GFP-EB1 was occasionally interrupted in the mutant cells. Recombinant SPR2 protein promoted microtubule polymerization, and bound to microtubules with an N-terminal segment that contained two HEAT repeats as well as to those with a C-terminal region. In vitro analyses of microtubule dynamics revealed that SPR2 and SP2L suppressed the pause state at microtubule ends, thereby leading to enhanced microtubule growth. We propose that the SPR2-family proteins act on the pause state to facilitate a transition to microtubule growth.


BioSystems | 2003

Mechanical analyses of morphological and topological transformation of liposomes.

Hirokazu Hotani; Takehiko Inaba; Fumimasa Nomura; Shuichi Takeda; Kingo Takiguchi; Tomohiko J. Itoh; Tamiki Umeda; Akihiko Ishijima

Liposomes are micro-compartments made of lipid bilayer membranes possessing the characteristics quite similar to those of biological membranes. To form artificial cell-like structures, we made liposomes that contained subunit proteins of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shapes by mechanical forces generated by the polymerization of encapsulated subunits of microtubules. On the other hand, disk- or dumbbell-shaped liposomes were developed by the polymerization of encapsulated actin. Dynamic processes of morphological transformations of liposomes were visualized by high intensity dark-field light microscopy. Topological changes, such as fusion and division of membrane vesicles, play an essential role in cellular activities. To investigate the mechanism of these processes, we visualized the liposomes undergoing topological transformation in real time. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles.


Journal of Molecular Biology | 2002

The Projection Domain of MAP4 Suppresses the Microtubule-bundling Activity of the Microtubule-binding Domain

Junko Iida; Tomohiko J. Itoh; Hirokazu Hotani; Ken-ichiro Nishiyama; Hiromu Murofushi; Jeannette Chloë Bulinski; Shin-ichi Hisanaga

Microtubule-associated protein 4 (MAP4), a major MAP expressed in proliferating non-neuronal cells, consists of an N-terminal projection (PJ) domain and a C-terminal microtubule-binding (MTB) domain. The PJ domain of MAP4 is divided into three regions; the N-terminal acidic region (the Na-region), the multiple KDM-repeated sequence region (the KDM-region), and the b-region followed by the MTB domain. To investigate roles of the PJ domain, we prepared three truncated forms of human MAP4 with different PJ domain lengths; PJ1, PJ2 and MTB with deletion of about one-third, two-third and all of the PJ domain, respectively, and examined their effects on bundle formation of microtubules (MTs). MTs polymerized by full length MAP4 were singly distributed as observed by both negative staining electron microscopy and dark field microscopy. MTs with PJ1 were also separated in solution but became pairs when pelleted by centrifugation. PJ2 formed planar two-dimensional bundles consisting of several MTs (the 2D-bundle). MTB induced large bundles of many MTs, tightly packed without space in between (termed the 3D-bundle). To study how the PJ domain decreases the bundle-forming activity of the MTB domain of MAP4, we made three additional deletion-mutants of MAP4, called Na-MTB, KDM-MTB and Na-PJ2. Na-MTB and KDM-MTB, in which the KDM/b-region and both of Na- and b-regions were deleted respectively, were prepared by fusing the Na-region or KDM-region to MTB. Both of Na-MTB and KDM-MTB suppressed the 3D-bundle formation as effectively as PJ2. MTs polymerized with Na-PJ2, the KDM-deletion mutant made by adding the Na-region to PJ2, were singular and did not become bundles. These results indicated that the PJ domain kept individual MTs separated by suppressing the bundle-forming ability of the MTB domain. The suppressive activity of the PJ domain was correlated with the length, but not the amino acid sequence, of the PJ.


Bioorganic & Medicinal Chemistry Letters | 2001

SELEX for Tubulin Affords Specific T-Rich DNA Aptamers

Eiichiro Fukusaki; Tomohisa Hasunuma; Shin-ichiro Kajiyama; Atsushi Okazawa; Tomohiko J. Itoh; Akio Kobayashi

We succeeded in acquiring two DNA aptamers that selectively recognize tubulin by the SELEX method. A pool of single-stranded oligo-DNAs including a random region of 59 nucleotides was screened by SELEX for tubulin purified from calf-brain as a target. After 20 repetitions of selection round, the library converged on specific T-rich sequences. The binding activity of T-rich clones was analyzed by the SPR sensor to determine their dissociation constants to be in the order of 10 microM.


Biology of the Cell | 2000

Dynamic changes in microtubule organization during division of the primitive dinoflagellate Oxyrrhis marina

Koichi Kato; Akihiko Moriyama; Tomohiko J. Itoh; Masayuki Yamamoto; Tetsuya Horio; Philippe Huitorel

Summry— The marine dinoflagellate Oxyrrhis marina has three major microtubular systems: the flagellar apparatus made of one transverse and one longitudinal flagella and their appendages, cortical microtubules, and intranuclear microtubules. We investigated the dynamic changes of these microtubular systems during cell division by transmission and scanning electron microscopy, and confocal fluorescent laser microscopy. During prophase, basal bodies, both flagella and their appendages were duplicated. In the round nucleus situated in the cell centre, intranuclear microtubules appeared radiating toward the centre of the nucleus from densities located in some nuclear pores. During metaphase, both daughter flagellar apparatus separated and moved apart along the main cell axis. Microtubules of ventral cortex were also duplicated and moved with the flagellar apparatus. The nucleus flattened in the longitudinal direction and became discoid‐shaped close to the equatorial plane. Many bundles of microtubules ran parallel to the short axis of the nucleus (cell long axis), between which chromosomes were arranged in the same direction. During ana—telophase, the nucleus elongated along the longitudinal axis and took a dumbbell shape. At this stage a contractile ring containing actin was clearly observed in the equatorial cortex. The cortical microtubule network seemed to be cut into two halves at the position of the actin bundle. Shortly after, the nucleus divided into two nuclei, then the cell body was constricted at its equator and divided into one anterior and one posterior halves which were soon rebuilt to produce two cells with two full sets of cortical microtubules. From our observations, several mechanisms for the duplication of the microtubule networks during mitosis in O. marina are discussed.


Journal of Molecular Biology | 2009

Direct Optical Microscopic Observation of the Microtubule Polymerization Intermediate Sheet Structure in the Presence of Gas7

Takafumi Uchida; Hirotada Akiyama; Wataru Sakamoto; Tomoe Koga; Kangmin Yan; Chiyoko Uchida; Keiko Hirose; Tomohiko J. Itoh

The process of microtubule elongation is thought to consist of two stages-formation of a tubulin sheet structure and its closure into a tube. However, real-time observation of this process has been difficult. Here, by utilizing phospho-tau binding protein Gas7 (growth-arrest-specific protein 7), we visualized the polymer transformation process by dark-field microscopy. Upon elongation, thin and flexible structures, often similar to a curved hook, appeared at the end of microtubules. Electron microscopic observations supported the idea that these flexible structures are tubulin sheets. They maintained their length until they gradually became thick and rigid beginning in the central portion, resulting in straight microtubules. In the absence of Gas7, the sheet-like structure was rarely observed; moreover, when observed, it was fragile and engaged in typical dynamic instability. With Gas7, no catastrophe was observed. These results suggest that Gas7 enhances microtubule polymerization by stabilizing sheet intermediates and is a useful tool for analyzing microtubule transformation.


Plant Physiology | 2009

GTP Is Required for the Microtubule Catastrophe-Inducing Activity of MAP200, a Tobacco Homolog of XMAP215

Takahiro Hamada; Tomohiko J. Itoh; Takashi Hashimoto; Teruo Shimmen; Seiji Sonobe

Widely conserved among eukaryotes, the microtubule-associated protein 215 (MAP215) family enhances microtubule dynamic instability. The family member studied most extensively, Xenopus laevis XMAP215, has been reported to enhance both assembly and disassembly parameters, although the mechanism whereby one protein can exert these apparently contradictory effects has not been clarified. Here, we analyze the activity of a plant MAP215 homolog, tobacco (Nicotiana tabacum) MAP200 on microtubule behavior in vitro. We show that, like XMAP215, MAP200 promotes both assembly and disassembly parameters, including microtubule growth rate and catastrophe frequency. When MAP200 is added to tubulin and taxol, strikingly long-coiled structures form. When GDP partially replaces GTP, the increase of catastrophe frequency by MAP200 is strongly diminished, even though this replacement stimulates catastrophe in the absence of MAP200. This implies that MAP200 induces catastrophes by a specific, GTP-requiring pathway. We hypothesize that, in the presence of MAP200, a catastrophe-prone microtubule lattice forms occasionally when elongated but nonadjacent protofilaments make lateral contacts.


Journal of Biological Physics | 2002

Morphological and topological transformation of membrane vesicles.

Fumimasa Nomura; Makoto Honda; Shuichi Takeda; Takehiko Inaba; Kingo Takiguchi; Tomohiko J. Itoh; Akihiko Ishijima; Tamiki Umeda; Hirokazu Hotani

Liposomes are micro-compartments made of lipid bilayer membranes withcharacteristics quite similar to those of biological membranes. To formartificial cell-like structures, we generated liposomes that containedsubunit proteins of cytoskeletons: tubulin or actin. Spherical liposomeswere transformed into bipolar or cell-like shapes by mechanical forcesgenerated by the polymerization of encapsulated subunits of microtubules.Disk- or dumbbell-shaped liposomes were developed by the polymerizationof encapsulated actin. Dynamic processes of morphological transformationsof liposomes were visualized by high intensity dark-field lightmicroscopy.Topological changes, such as fusion and division of membrane vesicles,play an essential role in cellular activities. To investigate themechanism of these processes, we visualized in real time the liposomesundergoing topological transformation. A variety of novel topologicaltransformations were found, including the opening-up of liposomes and thedirect expulsion of inner vesicles.

Collaboration


Dive into the Tomohiko J. Itoh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-ichi Hisanaga

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Junko Iida

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidemi Sato

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge