Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomohiko Tsuge is active.

Publication


Featured researches published by Tomohiko Tsuge.


The Plant Cell | 2011

d- myo -Inositol-3-Phosphate Affects Phosphatidylinositol-Mediated Endomembrane Function in Arabidopsis and Is Essential for Auxin-Regulated Embryogenesis

Yu Luo; Genji Qin; Jun Zhang; Yuan Liang; Yingqi Song; Meiping Zhao; Tomohiko Tsuge; Takashi Aoyama; Jingjing Liu; Hongya Gu; Li-Jia Qu

This work reveals the significant roles of myo-inositol in Arabidopsis embryogenesis. Experiments show that depletion of myo-inositol by knocking out multiple MIPS genes, which encode d-myo-inositol-3-phosphate synthase, could affect the membrane trafficking via the phosphatidylinositol metabolism by leading to altered auxin distribution in developing embryos. In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis.


Current Biology | 1998

The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex

Ning Wei; Tomohiko Tsuge; Giovanna Serino; Naoshi Dohmae; Koji Takio; Minami Matsui; Xing Wang Deng

The COP9 complex, genetically identified in Arabidopsis as a repressor of photomorphogenesis, is composed of multiple subunits including COP9, FUS6 (also known as COP11) and the Arabidopsis JAB1 homolog 1 (AJH1) ([1-3]; unpublished observations). We have previously demonstrated the existence of the mammalian counterpart of the COP9 complex and purified the complex by conventional biochemical and immunoaffinity procedures [4]. Here, we report the molecular identities of all eight subunits of the mammalian COP9 complex. We show that the COP9 complex is highly conserved between mammals and higher plants, and probably among most multicellular eukaryotes. It is not present in the single-cell eukaryote Saccharomyces cerevisiae, however. All of the subunits of the COP9 complex contain structural features that are also present in the components of the proteasome regulatory complex and the translation initiation factor eIF3 complex. Six subunits of the COP9 complex have overall similarity with six distinct non-ATPase regulatory subunits of the 26S proteasome, suggesting that the COP9 complex and the proteasome regulatory complex are closely related in their evolutionary origin. Subunits of the COP9 complex include regulators of the Jun N-terminal kinase (JNK) and c-Jun, a nuclear hormone receptor binding protein and a cell-cycle regulator. This suggests that the COP9 complex is an important cellular regulator modulating multiple signaling pathways.


The EMBO Journal | 2002

The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation

Gyung-Tae Kim; Keiko Shoda; Tomohiko Tsuge; Kiu-Hyung Cho; Hirofumi Uchimiya; Ryusuke Yokoyama; Kazuhiko Nishitani; Hirokazu Tsukaya

We previously showed that the ANGUSTIFOLIA (AN) gene regulates the width of leaves of Arabidopsis thaliana, by controlling the polar elongation of leaf cells. In the present study, we found that the abnormal arrangement of cortical microtubules (MTs) in an leaf cells appeared to account entirely for the abnormal shape of the cells. It suggested that the AN gene might regulate the polarity of cell growth by controlling the arrangement of cortical MTs. We cloned the AN gene using a map‐based strategy and identified it as the first member of the CtBP family to be found in plants. Wild‐type AN cDNA reversed the narrow‐leaved phenotype and the abnormal arrangement of cortical MTs of the an‐1 mutation. In the animal kingdom, CtBPs self‐associate and act as co‐repressors of transcription. The AN protein can also self‐associate in the yeast two‐hybrid system. Furthermore, microarray analysis suggested that the AN gene might regulate the expression of certain genes, e.g. the gene involved in formation of cell walls, MERI5. A discussion of the molecular mechanisms involved in the leaf shape regulation is presented based on our observations.


Current Biology | 2002

The COP9 Signalosome Inhibits p27kip1 Degradation and Impedes G1-S Phase Progression via Deneddylation of SCF Cul1

Xiaoming Yang; Suchithra Menon; Karin Lykke-Andersen; Tomohiko Tsuge; Di Xiao; Xiping Wang; Roberto J. Rodriguez-Suarez; Hui Zhang; Ning Wei

The COP9 signalosome (CSN) is a conserved protein complex with homologies to the lid subcomplex of the 26S proteasome. It promotes cleavage of the Nedd8 conjugate (deneddylation) from the cullin component of SCF ubiquitin ligases. We provide evidence that cullin neddylation and deneddylation is highly dynamic, that its equilibrium can be effectively modulated by CSN, and that neddylation allows Cul1 to form larger protein complexes. CSN2 integrates into the CSN complex via its C-terminal region and its N-terminal half region is necessary for direct interaction with Cul1. The polyclonal antibodies against CSN2 but not other CSN subunits cause accumulation of neddylated Cul1/Cul2 in HeLa cell extract, indicating that CSN2 is essential in cullin deneddylation. Further, CSN inhibits ubiquitination and degradation of the cyclin-dependent kinase inhibitor p27(kip1) in vitro. Microinjection of the CSN complex impeded the G1 cells from entering the S phase. Moreover, anti-CSN2 antibodies negate the CSN-dependent p27 stabilization and the G1/S blockage, suggesting that these functions require the deneddylation activity. We conclude that CSN inhibits SCF ubiquitin ligase activity in targeting p27 proteolysis and negatively regulates cell cycle at the G1 phase by promoting deneddylation of Cul1.


The Plant Cell | 1998

Arabidopsis Homologs of a c-Jun Coactivator Are Present Both in Monomeric Form and in the COP9 Complex, and Their Abundance Is Differentially Affected by the Pleiotropic cop/det/fus Mutations

Shing F. Kwok; Roberto Solano; Tomohiko Tsuge; Daniel A. Chamovitz; Joseph R. Ecker; Minami Matsui; Xing-Wang Deng

The CONSTITUTIVE PHOTOMORPHOGENIC9 (COP9) complex is a nuclear localized, multisubunit protein complex essential for repression of light-mediated development in Arabidopsis. Mutations that abolish the complex result in constitutive photomorphogenic development in darkness and pleiotropic developmental defects in both light and darkness. Here, we report the identification of two apparently redundant genes, AJH1 and AJH2, that encode a subunit of the COP9 complex. Both AJH1 and AJH2 share high amino acid sequence identity (62 and 63%, respectively) with JAB1, a specific mammalian coactivator of AP-1 transcription. The proteins encoded by these two genes are present in both complex and monomeric forms, whereas complex formation is in part mediated by the direct interaction with FUSCA6. In addition, the stability of the monomeric AJH proteins requires functional COP1 and DEETIOLATED1 loci. Together with the fact that the previously known subunit FUSCA6 is an Arabidopsis homolog of human GPS1, a negative regulator of AP-1 transcription, our data suggest that the COP9 complex may contain both negative and positive regulators of transcription. Therefore, the COP9 complex may achieve its pleiotropic effects on Arabidopsis development by modulating activities of transcription factors in response to environmental stimuli.


The Plant Cell | 2008

The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth

Hiroaki Kusano; Christa Testerink; Joop E. M. Vermeer; Tomohiko Tsuge; Hiroaki Shimada; Atsuhiro Oka; Teun Munnik; Takashi Aoyama

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] functions as a site-specific signal on membranes to promote cytoskeletal reorganization and membrane trafficking. Localization of PtdIns(4,5)P2 to apices of growing root hairs and pollen tubes suggests that it plays an important role in tip growth. However, its regulation and mode of action remain unclear. We found that Arabidopsis thaliana PIP5K3 (for Phosphatidylinositol Phosphate 5-Kinase 3) encodes a phosphatidylinositol 4-phosphate 5-kinase, a key enzyme producing PtdIns(4,5)P2, that is preferentially expressed in growing root hairs. T-DNA insertion mutations that substantially reduced the expression of PIP5K3 caused significantly shorter root hairs than in the wild type. By contrast, overexpression caused longer root hairs and multiple protruding sites on a single trichoblast. A yellow fluorescent protein (YFP) fusion of PIP5K3, driven by the PIP5K3 promoter, complemented the short-root-hair phenotype. PIP5K3-YFP localized to the plasma membrane and cytoplasmic space of elongating root hair apices, to growing root hair bulges, and, notably, to sites about to form root hair bulges. The signal was greatest in rapidly growing root hairs and quickly disappeared when elongation ceased. These results provide evidence that PIP5K3 is involved in localizing PtdIns(4,5)P2 to the elongating root hair apex and is a key regulator of the machinery that initiates and promotes root hair tip growth.


The Plant Cell | 2006

The A-Type Cyclin CYCA2;3 Is a Key Regulator of Ploidy Levels in Arabidopsis Endoreduplication

Kumiko K. Imai; Yohei Ohashi; Tomohiko Tsuge; Takeshi Yoshizumi; Minami Matsui; Atsuhiro Oka; Takashi Aoyama

Plant cells frequently undergo endoreduplication, a process in which chromosomal DNA is successively duplicated in the absence of mitosis. It has been proposed that endoreduplication is regulated at its entry by mitotic cyclin-dependent kinase activity. However, the regulatory mechanisms for its termination remain unclear, although plants tightly control the ploidy level in each cell type. In the process of searching for regulatory factors of endoreduplication, the promoter of an Arabidopsis thaliana cyclin A gene, CYCA2;3, was revealed to be active in developing trichomes during the termination period of endoreduplication as well as in proliferating tissues. Taking advantage of the situation that plants encode highly redundant cyclin A genes, we were able to perform functional dissection of CYCA2;3 using null mutant alleles. Null mutations of CYCA2;3 semidominantly promoted endocycles and increased the ploidy levels achieved in mature organs, but they did not significantly affect the proportion of cells that underwent endoreduplication. Consistent with this result, expression of the CYCA2;3–green fluorescent protein fusion protein restrained endocycles in a dose-dependent manner. Moreover, a mutation in the destruction box of CYCA2;3 stabilized the fusion protein in the nuclei and enhanced the restraint. We conclude that CYCA2;3 negatively regulates endocycles and acts as a key regulator of ploidy levels in Arabidopsis endoreduplication.


The Plant Cell | 2008

Targeted Degradation of the Cyclin-Dependent Kinase Inhibitor ICK4/KRP6 by RING-Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during Arabidopsis Gametogenesis

Jingjing Liu; Yiyue Zhang; Genji Qin; Tomohiko Tsuge; Norihiro Sakaguchi; Guo Luo; Kangtai Sun; Dong-Qiao Shi; Shiori Sugamata Aki; Nuoyan Zheng; Takashi Aoyama; Atsuhiro Oka; Wei-Cai Yang; Masaaki Umeda; Qi Xie; Hongya Gu; Li-Jia Qu

Following meiosis, plant gametophytes develop through two or three rounds of mitosis. Although the ontogeny of gametophyte development has been defined in Arabidopsis thaliana, the molecular mechanisms regulating mitotic cell cycle progression are not well understood. Here, we report that RING-H2 group F 1a (RHF1a) and RHF2a, two RING-finger E3 ligases, play an important role in Arabidopsis gametogenesis. The rhf1a rhf2a double mutants are defective in the formation of male and female gametophytes due to interphase arrest of the mitotic cell cycle at the microspore stage of pollen development and at female gametophyte stage 1 of embryo sac development. We demonstrate that RHF1a directly interacts with and targets a cyclin-dependent kinase inhibitor ICK4/KRP6 (for Interactors of Cdc2 Kinase 4/Kip-related protein 6) for proteasome-mediated degradation. Inactivation of the two redundant RHF genes leads to the accumulation of ICK4/KRP6, and reduction of ICK4/KRP6 expression largely rescues the gametophytic defects in rhf1a rhf2a double mutants, indicating that ICK4/KRP6 is a substrate of the RHF E3 ligases. Interestingly, in situ hybridization showed that ICK4/KRP6 was predominantly expressed in sporophytes during meiosis. Our findings indicate that RHF1a/2a-mediated degradation of the meiosis-accumulated ICK4/KRP6 is essential to ensure the progression of subsequent mitoses to form gametophytes in Arabidopsis.


The Plant Cell | 2010

A Novel Factor FLOURY ENDOSPERM2 Is Involved in Regulation of Rice Grain Size and Starch Quality

Kao-Chih She; Hiroaki Kusano; Kazuyoshi Koizumi; Hiromoto Yamakawa; Makoto Hakata; Tomohiro Imamura; Masato Fukuda; Natsuka Naito; Yumi Tsurumaki; Mitsuhiro Yaeshima; Tomohiko Tsuge; Ken’ichiro Matsumoto; Mari Kudoh; Eiko Itoh; Shoshi Kikuchi; Naoki Kishimoto; Junshi Yazaki; Tsuyu Ando; Masahiro Yano; Takashi Aoyama; Tadamasa Sasaki; Hikaru Satoh; Hiroaki Shimada

The authors clone the rice FLOURY ENDOSPERM2 (FLO2) gene; flo2 mutants have aberrant endosperm, and FLO2 overexpressors have enlarged grains. Gene expression and protein interaction studies indicate that FLO2, a novel tetratricopeptide repeat containing protein, regulates storage starch and protein gene expression in rice endosperm development and may also play a role in heat tolerance. Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein–protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.


Planta | 1994

The cotyledon: A superior system for studies of leaf development

Hirokazu Tsukaya; Tomohiko Tsuge; Hirofumi Uchimiya

The development of leaves in dicotyledonous plants is poorly understood because the division and expansion of cells occur at the same time and in the same positions. Our analysis has revealed that the growth of the cotyledons of Arabidopsis thaliana (L.) Heynh. depends only on the process of cell expansion. Thus, in this system, the roles of the expansion and division of cells in leaf development can be separated from each other. Analyzing the cotyledon, as a model leaf, we determined that a narrow-leaved mutant of Arabidopsis, angustifolia (an), has a defect in the polarity of the cell-expansion process. The defect was only manifested as the reduced width of blades of cotyledons, an observation which indicates that the direction of expansion of cotyledons is controlled by at least two genetically distinct pathways, one of which is regulated by the Angustifolia gene.

Collaboration


Dive into the Tomohiko Tsuge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge