Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomohiro Imura is active.

Publication


Featured researches published by Tomohiro Imura.


Biotechnology and Applied Biochemistry | 2009

Production of glycolipid biosurfactants by basidiomycetous yeasts

Tomotake Morita; Tokuma Fukuoka; Tomohiro Imura; Dai Kitamoto

BSs (biosurfactants) produced by various micro‐organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy‐saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation‐inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described.


Colloids and Surfaces B: Biointerfaces | 2003

Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method

Tomohiro Imura; Katsuto Otake; Satoru Hashimoto; Toshihiro Gotoh; Makoto Yuasa; Shoko Yokoyama; Hideki Sakai; James F. Rathman; Masahiko Abe

Abstract Three kinds of soybean lecithin liposomes composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidic acid (PA), were prepared by using the previously developed supercritical reverse phase evaporation method (Langmuir 17 (2001) 3898). The effect of phospholipid composition on the formation of liposomes and their physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for d -(+)-Glucose made of Lecinol S-10EX which contains approximately 95% PC is higher than that of Lecinol S-10 and SLP white SP which contain approximately 31% PC. However there is not any difference between the trapping efficiency of liposomes for d -(+)-Glucose made of Lecinol S-10 which has saturated hydrocarbons tails and that of liposomes made of SLP white SP which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of Lecinol S-10 and SLP white SP show small spherical liposomes with diameter of 0.1–0.25 μm, while that of Lecinol S-10EX shows large unilamellar liposomes (LUV) with diameter of 0.2–1.2 μm. These results clearly show that phospholipid structure of PC allows an efficient preparation of LUV and a high trapping efficiency for water-soluble substances. Liposomes made of Lecinol S-10 and SLP white SP remained well-dispersed for at least 14 days, while liposome suspension made of Lecinol S-10EX separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of Lecinol S-10EX is lower than that of Lecinol S-10 and SLP white SP due to the smaller zeta potential of Lecinol S-10EX.


Colloids and Surfaces B: Biointerfaces | 2001

Effect of adsorption of bovine serum albumin on liposomal membrane characteristics

Yumiko Yokouchi; Tadashi Tsunoda; Tomohiro Imura; Hitoshi Yamauchi; Shoko Yokoyama; Hideki Sakai; Masahiko Abe

The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.


Applied Microbiology and Biotechnology | 2013

Production of mannosylerythritol lipids and their application in cosmetics

Tomotake Morita; Tokuma Fukuoka; Tomohiro Imura; Dai Kitamoto

Mannosylerythritol lipids (MELs) are glycolipid biosurfactants abundantly produced by different basidiomycetous yeasts such as Pseudozyma, and show not only excellent interfacial properties but also versatile biochemical actions. These features of MELs make their application in new technology areas possible. Recently, the structural and functional variety of MELs was considerably expanded by advanced microbial screening methods. Different types of MELs bearing different hydrophilic and hydrophobic parts have been reported. The genes responsible for MEL biosynthesis were identified, and their genetic study is now in progress, aiming to control the chemical structure. The excellent properties leading to practical cosmetic ingredients, i.e., moisturization of dry skin, repair of damaged hair, activation of fibroblast and papilla cells and antioxidant and protective effects in skin cells, have been demonstrated on the yeast glycolipid biosurfactants. In this review, the current status of research and development on MELs, particularly the commercial application in cosmetics, is described.


Biotechnology Letters | 2007

Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts

Tokuma Fukuoka; Tomotake Morita; Masaaki Konishi; Tomohiro Imura; Dai Kitamoto

Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4′,6′-di-O-acetyl-2′,3′-di-O-alka(e)noyl)-β-d-mannopyranosyl]-d-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids.


Colloids and Surfaces B: Biointerfaces | 2001

Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes

Tadashi Tsunoda; Tomohiro Imura; Makiko Kadota; Tadao Yamazaki; Hitoshi Yamauchi; Kyung Ok Kwon; Shoko Yokoyama; Hideki Sakai; Masahiko Abe

The effects of adsorption of two kinds of proteins on the membrane characteristics of liposomes were examined at pH 7.4 in terms of adsorption amounts of proteins on liposomes, penetrations of proteins into liposomal bilayer membranes, phase transition temperature, microviscosity and permeability of liposomal bilayer membranes, using positively charged lysozyme (LSZ) and negatively charged bovine serum albumin (BSA) as proteins and negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG) liposomes. The saturated adsorption amount of LSZ was 720 g per mol of liposomal DPPG, while that of BSA was 44 g per mol of liposomal DPPG. The penetration of LSZ into DPPG lipid membranes was greater than that of BSA. The microviscosity in the hydrophobic region of liposomal bilayer membranes increased due to adsorption (penetration) of LSZ or BSA, while the permeability of liposomal bilayer membranes increased. The gel-liquid crystalline phase transition temperature of liposomal bilayer membranes was not affected by adsorption of LSZ or BSA, while the DSC peak area (heat of phase transition) decreased with increasing adsorption amount of LSZ or BSA. It is suggested that boundary DPPG makes no contribution to the phase transition and that boundary DPPG and bulk DPPG are in the phase-separated state, thereby increasing the permeability of liposomal bilayer membranes through adsorption of LSZ or BSA. A possible schematic model for the adsorption of LSZ or BSA on DPPG liposomes was proposed.


Genome Announcements | 2013

Genome Sequence of the Basidiomycetous Yeast Pseudozyma antarctica T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids

Tomotake Morita; Hideaki Koike; Yoshinori Koyama; Hiroko Hagiwara; Emi Ito; Tokuma Fukuoka; Tomohiro Imura; Masayuki Machida; Dai Kitamoto

ABSTRACT The basidiomycetous yeast Pseudozyma antarctica T-34 is an excellent producer of mannosylerythritol lipids (MELs), members of the multifunctional extracellular glycolipids, from various feedstocks. Here, the genome sequence of P. antarctica T-34 was determined and annotated. Analysis of the sequence might provide insights into the properties of this yeast that make it superior for use in the production of functional glycolipids, leading to the further development of P. antarctica for industrial applications.


Colloids and Surfaces B: Biointerfaces | 2001

Preparation of liposomes containing Ceramide 3 and their membrane characteristics.

Tomohiro Imura; Hideki Sakai; Hitoshi Yamauchi; Chihiro Kaise; Kozo Kozawa; Shoko Yokoyama; Masahiko Abe

Liposomes composed of Ceramide 3, [2S,3S,4R-2-stearoylamide-1,3,4-octadecanetriol], and L-alpha-dipalmitoylphosphatidylcholine (DPPC) were prepared by varying the amount of Ceramide 3, and the effects of Ceramide 3 on the liposome formation, particle size, dispersibility, microviscosity and phase transition temperature were examined by means of a microscopy, a dynamic light scattering method, a fluorescence polarization method, a differential scanning calorimetry (DSC) and so on. All the DPPC was able to contribute to the formation of liposomes up to 0.130 mol fraction of Ceramide 3. The particle size of liposomes was almost unaffected by the addition of Ceramide 3. The dispersibility of liposomes containing Ceramide 3 was maintained for at least 15 days. The microviscosity of liposomal bilayer membranes in the liquid crystalline state was increased with increasing the mole fraction of Ceramide 3, while that in the gel state was independent of the mole fraction of Ceramide 3. The phase transition temperature from gel to liquid crystalline states of DPPC bilayer membranes was shifted upwards with the addition of Ceramide 3, indicating a cooperative interaction between DPPC and Ceramide 3 molecules. However, a sharp DSC peak became broad and split at higher mole fractions of Ceramide 3, suggesting a phase separation in the mixed DPPC/Ceramide 3 liposomal bilayer membranes. These phenomena were suggested to be related to the previously observed fact for the mixed DPPC/Ceramide 3 monolayers that Ceramide 3 interacts with DPPC in the liquid-expanded phase with consequent phase separation accompanied with domain formation.


Journal of Bioscience and Bioengineering | 2011

Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids.

Tomotake Morita; Yuki Ogura; Masako Takashima; Naoto Hirose; Tokuma Fukuoka; Tomohiro Imura; Yukishige Kondo; Dai Kitamoto

An ustilaginomycetous anamorphic yeast species isolated from the leaves of Saccharum officinarum (sugarcane) in Okinawa, Japan, was identified as a novel Pseudozyma species based on morphological and physiological aspects and molecular taxonomic analysis using the D1/D2 domains of the large subunit (26S) rRNA gene and the internal transcribed spacer 1 (ITS1)-5.8S-ITS2 regions. The name Pseudozyma churashimaensis sp. nov. was proposed for the novel species, with JCM 16988(T) as the type strain. Interestingly, P. churashimaensis was found to produce glycolipid biosurfactants, a mixture of mannosylerythritol lipids (MELs), including a novel tri-acetylated derivative (MEL-A2), from glucose. The observed critical micelle concentration (CMC) and the surface tension at CMC of MEL-A2 were 1.7 × 10⁻⁶ M and 29.2 mN/m, respectively. Moreover, on a water-penetration scan, MEL-A2 efficiently formed different lyotropic liquid crystalline phases, including the lamella phase at a wide range of concentrations, indicating its excellent surface-active and self-assembling properties. The novel strain of the genus Pseudozyma should thus facilitate the application of glycolipid biosurfactants in combination with other MEL producers.


Journal of Bioscience and Bioengineering | 2011

Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62

Masaaki Konishi; Takahiko Nagahama; Tokuma Fukuoka; Tomotake Morita; Tomohiro Imura; Dai Kitamoto; Yuji Hatada

We improved the culture conditions for a biosurfactant producing yeast, Pseudozyma hubeiensis SY62. We found that yeast extract greatly stimulates MEL production. Furthermore, we demonstrated a highly efficient production of MELs in the improved medium by fed-batch cultivation. The final concentration of MELs reached 129 ± 8.2g/l for one week.

Collaboration


Dive into the Tomohiro Imura's collaboration.

Top Co-Authors

Avatar

Dai Kitamoto

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tokuma Fukuoka

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Sakai

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masahiko Abe

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Masaaki Konishi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Toshiaki Taira

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge