Tomohiro Tachi
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomohiro Tachi.
Nature Materials | 2016
Levi H. Dudte; Etienne Vouga; Tomohiro Tachi; L. Mahadevan
Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Evgueni T. Filipov; Tomohiro Tachi; Glaucio H. Paulino
Significance Origami, the ancient art of folding paper, has recently emerged as a method for creating deployable and reconfigurable engineering systems. These systems tend to be flexible because the thin sheets bend and twist easily. We introduce a new method of assembling origami into coupled tubes that can increase the origami stiffness by two orders of magnitude. The new assemblages can deploy through a single flexible motion, but they are substantially stiffer for any other type of bending or twisting movement. This versatility can be used for deployable structures in robotics, aerospace, and architecture. On a smaller scale, assembling thin sheets into these tubular assemblages can create metamaterials that can be deployed, stiffened, and tuned. Thin sheets have long been known to experience an increase in stiffness when they are bent, buckled, or assembled into smaller interlocking structures. We introduce a unique orientation for coupling rigidly foldable origami tubes in a “zipper” fashion that substantially increases the system stiffness and permits only one flexible deformation mode through which the structure can deploy. The flexible deployment of the tubular structures is permitted by localized bending of the origami along prescribed fold lines. All other deformation modes, such as global bending and twisting of the structural system, are substantially stiffer because the tubular assemblages are overconstrained and the thin sheets become engaged in tension and compression. The zipper-coupled tubes yield an unusually large eigenvalue bandgap that represents the unique difference in stiffness between deformation modes. Furthermore, we couple compatible origami tubes into a variety of cellular assemblages that can enhance mechanical characteristics and geometric versatility, leading to a potential design paradigm for structures and metamaterials that can be deployed, stiffened, and tuned. The enhanced mechanical properties, versatility, and adaptivity of these thin sheet systems can provide practical solutions of varying geometric scales in science and engineering.
Smart Materials and Structures | 2014
Kenneth Cheung; Tomohiro Tachi; Sam Calisch; Koryo Miura
A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.
Graphs and Combinatorics | 2011
Erik D. Demaine; Martin L. Demaine; Vi Hart; Gregory N. Price; Tomohiro Tachi
We prove that the pleated hyperbolic paraboloid, a familiar origami model known since 1927, in fact cannot be folded with the standard crease pattern in the standard mathematical model of zero-thickness paper. In contrast, we show that the model can be folded with additional creases, suggesting that real paper “folds” into this model via small such creases. We conjecture that the circular version of this model, consisting simply of concentric circular creases, also folds without extra creases. At the heart of our results is a new structural theorem characterizing uncreased intrinsically flat surfaces—the portions of paper between the creases. Differential geometry has much to say about the local behavior of such surfaces when they are sufficiently smooth, e.g., that they are torsal ruled. But this classic result is simply false in the context of the whole surface. Our structural characterization tells the whole story, and even applies to surfaces with discontinuities in the second derivative. We use our theorem to prove fundamental properties about how paper folds, for example, that straight creases on the piece of paper must remain piecewise-straight (polygonal) by folding.
Journal of Mechanical Design | 2013
Tomohiro Tachi
In this research, we study a method to produce families of origami tessellations from given polyhedral surfaces. The resulting tessellated surfaces generalize the patterns proposed by Ron Resch and allow the construction of an origami tessellation that approximates a given surface. We will achieve these patterns by first constructing an initial configuration of the tessellated surfaces by separating each facets and inserting folded parts between them based on the local configuration. The initial configuration is then modified by solving the vertex coordinates to satisfy geometric constraints of developability, folding angle limitation, and local nonintersection. We propose a novel robust method for avoiding intersections between facets sharing vertices. Such generated polyhedral surfaces are not only applied to folding paper but also sheets of metal that does not allow 180 deg folding.
Archive | 2010
Tomohiro Tachi
This paper presents a computational design method to obtain collapsible variations of rigid-foldable surfaces, i.e., continuously and finitely transformable polyhedral surfaces, homeomorphic to disks and cylinders. Two novel techniques are proposed to design such surfaces: a technique for obtaining a freeform variation of a rigid-foldable and bidirectionally flat-foldable disk surface, which is a hybrid of generalized Miura-ori and eggbox patterns, and a technique to generalize the geometry of cylindrical surface using bidirectionally flat-foldable planar quadrilateral mesh by introducing additional constraints to keep the topology maintained throughout the continuous transformation. Proposed methods produce freeform variations of rigid-foldable structures that have not been realized thus far. Such a structure forms a one-DOF mechanism with two possible flat states. This enables the designs of deployable structures useful for packaging the boundary of architectural spaces, space structures, and so on.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science | 2016
Evgueni T. Filipov; Glaucio H. Paulino; Tomohiro Tachi
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | 2013
Hiromi Yasuda; Thu Yein; Tomohiro Tachi; Koryo Miura; Minoru Taya
In this paper, we examine the folding behaviour of Tachi–Miura polyhedron (TMP) bellows made of paper, which is known as a rigid-foldable structure, and construct a theoretical model to predict the mechanical energy associated with the compression of TMP bellows, which is compared with the experimentally measured energy, resulting in the gap between the mechanical work by the compression force and the bending energy distributed along all the crease lines. The extended Hamiltons principle is applied to explain the gap which is considered to be energy dissipation in the mechanical behaviour of TMP bellows.
Journal of Mechanisms and Robotics | 2017
Tomohiro Tachi; Thomas C. Hull
When actuating a rigid origami mechanism by applying moments at the crease lines, we often confront the bifurcation problem where it is not possible to predict the way the model will fold when it is in a flat state. In this paper, we develop a mathematical model of self-folding and propose the concept of self-foldability of rigid origami when a set of moments, which we call a driving force, are applied. In particular, we desire to design a driving force such that a given crease pattern can uniquely self-fold to a desired mode without getting caught in a bifurcation. We provide necessary conditions for selffoldability that serve as tools to analyze and design self-foldable crease patterns. Using these tools, we analyze the unique self-foldability of several fundamental patterns and demonstrate the usefulness of the proposed model for mechanical design. [DOI: 10.1115/1.4035558]
Journal of Computational Geometry | 2016
Zachary Abel; Jason Cantarella; Erik D. Demaine; David Eppstein; Thomas C. Hull; Jason S. Ku; Robert J. Lang; Tomohiro Tachi
We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.