Tomoki Kosho
Shinshu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomoki Kosho.
Nature Genetics | 2012
Yoshinori Tsurusaki; Nobuhiko Okamoto; Hirofumi Ohashi; Tomoki Kosho; Yoko Imai; Yumiko Hibi-Ko; Tadashi Kaname; Kenji Naritomi; Hiroshi Kawame; Keiko Wakui; Yoshimitsu Fukushima; Tomomi Homma; Mitsuhiro Kato; Yoko Hiraki; Takanori Yamagata; Shoji Yano; Seiji Mizuno; Satoru Sakazume; Takuma Ishii; Toshiro Nagai; Masaaki Shiina; Kazuhiro Ogata; Tohru Ohta; Norio Niikawa; Satoko Miyatake; Ippei Okada; Takeshi Mizuguchi; Hiroshi Doi; Hirotomo Saitsu; Noriko Miyake
By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.
American Journal of Medical Genetics Part A | 2006
Tomoki Kosho; Tomohiko Nakamura; Hiroshi Kawame; Atsushi Baba; Masanori Tamura; Yoshimitsu Fukushima
Management of neonates with trisomy 18 is controversial, supposedly due to the prognosis and the lack of precise clinical information concerning efficacy of treatment. To delineate the natural history of trisomy 18 managed under intensive treatment, we reviewed detailed clinical data of 24 patients with full trisomy 18 admitted to the neonatal intensive care unit of Nagano Childrens Hospital, providing intensive treatment to those with trisomy 18, from 1994 to 2003. Cesarean, resuscitation by intubation, and surgical operations were performed on 16 (67%), 15 (63%), and 10 (42%) of the patients, respectively. Mechanical ventilation was required by 21 (88%), and 6 (29%) of them were extubated. Survival rate at age 1 week, 1 month, and 1 year was 88%, 83%, and 25%, respectively. Median survival time was 152.5 days. Respiration was not stabilized in two patients with left diaphragmatic eventration and hypoplasia accompanied by lung hypoplasia, even with maximal ventilation. The common underlying factors associated with death were congenital heart defects and heart failure (96%), followed by pulmonary hypertension (78%). The common final modes of death were sudden cardiac or cardiopulmonary arrest (26%) and possible progressive pulmonary hypertension‐related events (26%). These data of improved survival, through neonatal intensive treatment, are helpful for clinicians to offer the best information on treatment options to families of patients with trisomy 18.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2017
Fransiska Malfait; Clair A. Francomano; Peter H. Byers; John W. Belmont; Britta Berglund; James Black; Lara Bloom; Jessica M. Bowen; Angela F. Brady; Nigel Burrows; Marco Castori; Helen Cohen; Marina Colombi; Serwet Demirdas; Julie De Backer; Anne De Paepe; Sylvie Fournel-Gigleux; Michael Frank; Neeti Ghali; Cecilia Giunta; Rodney Grahame; Alan Hakim; Xavier Jeunemaitre; Diana Johnson; Birgit Juul-Kristensen; Ines Kapferer-Seebacher; Hanadi Kazkaz; Tomoki Kosho; Mark Lavallee; Howard P. Levy
The Ehlers–Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagen‐encoding genes, or in genes encoding collagen‐modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes.
American Journal of Medical Genetics Part A | 2013
Noriko Miyake; Eriko Koshimizu; Nobuhiko Okamoto; Seiji Mizuno; Tsutomu Ogata; Toshiro Nagai; Tomoki Kosho; Hirofumi Ohashi; Mitsuhiro Kato; Goro Sasaki; Hiroyo Mabe; Yoriko Watanabe; Makoto Yoshino; Toyojiro Matsuishi; Jun-ichi Takanashi; Vorasuk Shotelersuk; Mustafa Tekin; Nobuhiko Ochi; Masaya Kubota; Naoko Ito; Kenji Ihara; Toshiro Hara; Hidefumi Tonoki; Tohru Ohta; Kayoko Saito; Mari Matsuo; Mari Urano; Takashi Enokizono; Astushi Sato; Hiroyuki Tanaka
Kabuki syndrome is a congenital anomaly syndrome characterized by developmental delay, intellectual disability, specific facial features including long palpebral fissures and ectropion of the lateral third of the lower eyelids, prominent digit pads, and skeletal and visceral abnormalities. Mutations in MLL2 and KDM6A cause Kabuki syndrome. We screened 81 individuals with Kabuki syndrome for mutations in these genes by conventional methods (n = 58) and/or targeted resequencing (n = 45) or whole exome sequencing (n = 5). We identified a mutation in MLL2 or KDM6A in 50 (61.7%) and 5 (6.2%) cases, respectively. Thirty‐five MLL2 mutations and two KDM6A mutations were novel. Non‐protein truncating‐type MLL2 mutations were mainly located around functional domains, while truncating‐type mutations were scattered through the entire coding region. The facial features of patients in the MLL2 truncating‐type mutation group were typical based on those of the 10 originally reported patients with Kabuki syndrome; those of the other groups were less typical. High arched eyebrows, short fifth finger, and hypotonia in infancy were more frequent in the MLL2 mutation group than in the KDM6A mutation group. Short stature and postnatal growth retardation were observed in all individuals with KDM6A mutations, but in only half of the group with MLL2 mutations.
American Journal of Medical Genetics Part A | 2006
Noriko Miyake; Osamu Shimokawa; Naoki Harada; Nadia Sosonkina; Aiko Okubo; Hiroki Kawara; Nobuhiko Okamoto; Kenji Kurosawa; Hiroshi Kawame; Mie Iwakoshi; Tomoki Kosho; Yoshimitsu Fukushima; Yoshio Makita; Yuji Yokoyama; Takanori Yamagata; Mitsuhiro Kato; Yoko Hiraki; Masayo Nomura; Ko-ichiro Yoshiura; Tatsuya Kishino; Tohru Ohta; Takeshi Mizuguchi; Norio Niikawa; Naomichi Matsumoto
Array using 2,173 BAC clones covering the whole human genome has been constructed. All clones spotted were confirmed to show a unique signal at the predicted chromosomal location by FISH analysis in our laboratory. A total of 30 individuals with idiopathic mental retardation (MR) were analyzed by comparative genomic hybridization using this array. Three deletions, one duplication, and one unbalanced translocation could be detected in five patients, which are likely to contribute to MR. The constructed array was shown to be an efficient tool for the detection of pathogenic genomic rearrangements in MR patients as well as copy number polymorphisms (CPNs).
American Journal of Medical Genetics Part A | 2013
Tomoki Kosho; Nobuhiko Okamoto; Hirofumi Ohashi; Yoshinori Tsurusaki; Yoko Imai; Yumiko Hibi-Ko; Hiroshi Kawame; Tomomi Homma; Saori Tanabe; Mitsuhiro Kato; Yoko Hiraki; Takanori Yamagata; Shoji Yano; Satoru Sakazume; Takuma Ishii; Toshiro Nagai; Tohru Ohta; Norio Niikawa; Seiji Mizuno; Tadashi Kaname; Kenji Naritomi; Yoko Narumi; Keiko Wakui; Yoshimitsu Fukushima; Satoko Miyatake; Takeshi Mizuguchi; Hirotomo Saitsu; Noriko Miyake; Naomichi Matsumoto
Mutations in the components of the SWItch/sucrose nonfermentable (SWI/SNF)‐like chromatin remodeling complex have recently been reported to cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and ARID1B‐related intellectual disability (ID) syndrome. We detail here the genotype‐phenotype correlations for 85 previously published and one additional patient with mutations in the SWI/SNF complex: four with SMARCB1 mutations, seven with SMARCA4 mutations, 37 with SMARCA2 mutations, one with an SMARCE1 mutation, three with ARID1A mutations, and 33 with ARID1B mutations. The mutations were associated with syndromic ID and speech impairment (severe/profound in SMARCB1, SMARCE1, and ARID1A mutations; variable in SMARCA4, SMARCA2, and ARID1B mutations), which was frequently accompanied by agenesis or hypoplasia of the corpus callosum. SMARCB1 mutations caused “classical” CSS with typical facial “coarseness” and significant digital/nail hypoplasia. SMARCA4 mutations caused CSS without typical facial coarseness and with significant digital/nail hypoplasia. SMARCA2 mutations caused NCBRS, typically with short stature, sparse hair, a thin vermillion of the upper lip, an everted lower lip and prominent finger joints. A SMARCE1 mutation caused CSS without typical facial coarseness and with significant digital/nail hypoplasia. ARID1A mutations caused the most severe CSS with severe physical complications. ARID1B mutations caused CSS without typical facial coarseness and with mild digital/nail hypoplasia, or caused syndromic ID. Because of the common underlying mechanism and overlapping clinical features, we propose that these conditions be referred to collectively as “SWI/SNF‐related ID syndromes”.
American Journal of Medical Genetics Part A | 2010
Tomoki Kosho; Noriko Miyake; Atsushi Hatamochi; Jun Takahashi; Hiroyuki Kato; Teruyoshi Miyahara; Yasuhiko Igawa; Hiroshi Yasui; Tadao Ishida; Kurahito Ono; Takashi Kosuda; Akihiko Inoue; Mohei Kohyama; Tadashi Hattori; Hirofumi Ohashi; Gen Nishimura; Rie Kawamura; Keiko Wakui; Yoshimitsu Fukushima; Naomichi Matsumoto
We previously described two unrelated patients showing characteristic facial and skeletal features, overlapping with the kyphoscoliosis type Ehlers–Danlos syndrome (EDS) but without lysyl hydroxylase deficiency [Kosho et al. (2005) Am J Med Genet Part A 138A:282–287]. After observations of them over time and encounter with four additional unrelated patients, we have concluded that they represent a new clinically recognizable type of EDS with distinct craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility‐related manifestations. The patients exhibited strikingly similar features according to their age: craniofacial, large fontanelle, hypertelorism, short and downslanting palpebral fissures, blue sclerae, short nose with hypoplastic columella, low‐set and rotated ears, high palate, long philtrum, thin vermilion of the upper lip, small mouth, and micro‐retrognathia in infancy; slender and asymmetric face with protruding jaw from adolescence; skeletal, congenital contractures of fingers, wrists, and hips, and talipes equinovarus with anomalous insertions of flexor muscles; progressive joint laxity with recurrent dislocations; slender and/or cylindrical fingers and progressive talipes valgus and cavum or planus, with diaphyseal narrowing of phalanges, metacarpals, and metatarsals; pectus deformities; scoliosis or kyphoscoliosis with decreased physiological curvatures of thoracic spines and tall vertebrae; cutaneous, progressive hyperextensibility, bruisability, and fragility with atrophic scars; fine palmar creases in childhood to acrogeria‐like prominent wrinkles in adulthood, recurrent subcutaneous infections with fistula formation; cardiovascular, cardiac valve abnormalities, recurrent large subcutaneous hematomas from childhood; gastrointestinal, constipation, diverticula perforation; respiratory, (hemo)pneumothorax; and ophthalmological, strabismus, glaucoma, refractive errors.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2014
Tomoki Kosho; Noriko Miyake; John C. Carey
This issue of Seminars in Medical Genetics, American Journal of Medical Genetics Part C investigates the human diseases caused by mutations in the BAF complex (also known as the mammalian SWI/SNF complex) genes, particularly focusing on Coffin–Siris syndrome (CSS). CSS is a rare congenital malformation syndrome characterized by developmental delay or intellectual disability (ID), coarse facial appearance, feeding difficulties, frequent infections, and hypoplasia/aplasia of the fifth fingernails and fifth distal phalanges. In 2012, 42 years after the first description of CSS in 1970, five causative genes (SMARCB1, SMARCE1, SMARCA4, ARID1A, ARID1B), all encoding components of the BAF complex, were identified as being responsible for CSS through whole exome sequencing and pathway‐based genetic screening. The identification of two additional causative genes (PHF6, SOX11) followed. Mutations in another BAF complex gene (SMARCA2) and (TBC1D24) were found to cause clinically similar conditions with ID, Nicolaides–Baraitser syndrome and DOORS syndrome, respectively. Also, ADNP was found to be mutated in an autism/ID syndrome. Furthermore, there is growing evidences for germline or somatic mutations in the BAF complex genes to be causal for cancer/cancer predisposition syndromes. These discoveries have highlighted the role of the BAF complex in the human development and cancer formation. The biology of BAF is very complicated and much remains unknown. Ongoing research is required to reveal the whole picture of the BAF complex in human development, and will lead to the development of new targeted therapies for related disorders in the future.
American Journal of Medical Genetics Part A | 2013
Tomoki Kosho; Hideo Kuniba; Yuko Tanikawa; Yoko Hashimoto; Hiroko Sakurai
We conducted a questionnaire‐based study in collaboration with a Japanese trisomy 18 parental support group. Sixty‐five children (female, 68%) with full trisomy 18 were evaluated. Diagnosis was made prenatally in 17% (11/65) and 57% (37/65) were born following a cesarean. The mean gestational age at delivery was 38 weeks and 6 days, and the mean birth weight was 1,920 g (−2.6SD). A total of 51% (24/47) of children had apneic episodes. Thirteen children experienced generalized seizures, and a minority was seizure‐free with medication. Parents of 36% (18/50) of children were offered intensive treatment. A total of 45% (27/60) of children received intermittent mandatory ventilation, which was weaned off in half of them. Nine had surgeries, including esophageal atresia/omphalocele correction, cardiac surgery, and tracheostomy. A total of 15% (8/55) were fed fully orally, and 45% (29/64) were discharged home. Slow but constant psychomotor development was observed, and in four long‐term survivors over 10 years, two walked unassisted. Factors significantly associated with survival over 1 year included diagnosis after birth, absence of prematurity, heavier birth weight, absence of esophageal atresia, extubation, ability to feed orally without medical assistance, and home discharge. Parents appeared to be positive about caring for their children, and the children seemed to interact with parents and siblings as long as they lived, resulting in quality family time. The family point of view, as well as knowledge of natural history, should be considered when policy statements about the care of children with trisomy 18 are made.
American Journal of Medical Genetics Part A | 2005
Tomoki Kosho; Jun Takahashi; Hirofumi Ohashi; Gen Nishimura; Hiroyuki Kato; Yoshimitsu Fukushima
Two unrelated girls, aged 11 and 14 years, with clinical manifestations of Ehlers–Danlos syndrome (EDS) type VIB, characteristic facies, skeletal abnormalities, and other features are described. They had Marfanoid habitus with pectus excavatum; fragile, hyperextensible, and readily bruisable skin with widened, atrophic scars; recurrent hematomas; generalized joint laxity; hypotonia; scoliosis; and mild delay of gross motor development. Lysyl hydroxylase deficiency was ruled out in Patient 1. Parental consanguinity was present in Patient 2. They both had, in early childhood, down‐slanting palpebral fissures, drooping lower eyelids, short nose, small mouth, and long philtrum. Facial features that persisted included thick eyebrows, hypertelorism, strabismus, blue sclerae, low‐set, and slanted ears, hypoplastic columella, high‐arched palate, and thin upper lip. They had tubular stenosis of the phalanges, metacarpals, and metatarsals; decreased physiological curvatures of the spinal column with tall vertebrae; and joint contractures including talipes equinovarus and progressive talipes valgus. Their hearing of high‐pitched sounds was impaired. They had constipation and recurrent cystitis with an enlarged bladder. In view of these findings, we propose that these two girls represent a clinically recognizable subgroup of EDS type VIB.