Tomoki Nishino
Japan Tobacco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomoki Nishino.
Experimental and Toxicologic Pathology | 2010
Kosuke Okuwa; Masahiro Tanaka; Yasuo Fukano; Hidenori Nara; Yosuke Nishijima; Tomoki Nishino
Previous studies on the biological assessment of cigarette smoke (CS) mainly focused on the total particulate matter (TPM) collected using a Cambridge filter or gas vapor phase (GVP) bubbled through phosphate-buffered saline (PBS). To study the effects of native CS in vitro, direct exposure methods have been developed. Meanwhile, in vitro micronucleus (MN) assays have been reported to evaluate the mutagenicity of CS. The objective of this research is to investigate the MN-inducing activity of whole smoke (WS) and GVP using a whole smoke exposure system, CULTEX((R)), which allows direct exposure of cultured cells to native CS at the air/liquid interface (ALI). CS was generated according to the International Organization for Standardization (ISO; 35ml, 2s, once per 60s) or the Health Canada Intensive (HCI; 55ml, 2s, once per 30s, with complete ventilation block) regimens and Chinese hamster lung (CHL/IU) cells were then exposed to this smoke. Dosages were adjusted according to the amount of smoke entering the actual exposure position. Under both smoking regimens, WS and GVP from 2R4F reference cigarettes induced MN responses. The concept of the dosage and similar dose-response relationships between theoretical and monitored dosage values under the two regimens enabled us to compare the MN-inducing activities of cigarettes in the direct exposure assay, even in the case of various experimental settings or different TPM amounts. MN-inducing activities of 2R4F under the ISO regimen seemed to be higher than those under HCI estimated by the TPM equivalent calculated values.
Experimental and Toxicologic Pathology | 2013
Hidenori Nara; Yasuo Fukano; Tomoki Nishino; Michaela Aufderheide
For the biological evaluation of cigarette smoke in vitro, the particulate phase (PP) and the gas vapor phase (GVP) of mainstream smoke have usually been collected individually and exposed to biological material such as cultured cells. Using this traditional method, the GVP is collected by bubbling in an aqueous solution such as phosphate-buffered saline (PBS). In such a way the water-insoluble GVP fraction is excluded from the GVP, meaning that the toxic potential of the water-insoluble GVP fraction has hardly been investigated so far. In our experiments we used a direct exposure method to expose cells at the air-liquid interface (ALI) to the water-insoluble GVP fraction for demonstrating its toxicological/biological activity. In order to isolate the water-insoluble GVP fraction from mainstream smoke, the GVP was passed through 6 impingers connected in series with PBS. After direct exposure of Chinese hamster ovary cells (CHO-K1) with the water-insoluble GVP fraction in the CULTEX(®) system its cytotoxicity was assayed by using the neutral red uptake assay. The water-insoluble GVP fraction was proven to be less cytotoxic than the water-soluble GVP fraction, but showed a significant effect in a dose-dependent manner. The results of this study showed that the direct exposure of cultivated cells at the air-liquid interface offers the possibility to analyze the biological and toxicological activities of all fractions of cigarette smoke including the water-insoluble GVP fraction.
Inhalation Toxicology | 2015
Hitoshi Fujimoto; Hiroyuki Tsuji; Chigusa Okubo; Ichiro Fukuda; Tomoki Nishino; K. Monica Lee; Roger A. Renne; Hiroyuki Yoshimura
Abstract The heated cigarette (HC) generates mainstream smoke by vaporizing the components of the tobacco rod using a carbon heat source at the cigarette tip. Mainstream smoke of HC contains markedly less chemical constituents compared to combusted cigarettes. Mainstream smoke from HC was generated under Health Canada Intense regimen and its biological effects were compared to those of Reference (3R4F) cigarettes, using nose-only 5-week and 13-week inhalation studies. In the 13-week study, SD rats were necropsied following exposure to mainstream smoke from each cigarette at 200, 600 or 1000 µg wet total particulate matter/L for 1 h/day, 7 days/week or following a 13-week recovery period. Histopathological changes in the respiratory tract were significantly lesser in HC groups; e.g. respiratory epithelial hyperplasia in the nasal cavity and accumulation of pigmented macrophages in alveoli. After a 13-week recovery, the lesions were completely or partially regressed, except for accumulation of pigmented macrophages in alveoli, in both HC and 3R4F groups. In the 5-week study, SD rats were necropsied following exposure to mainstream smoke of either cigarette at 600 or 1000 µg/L for 1 h, two times/day (with 30 min interval), 7 days/week or following a 4-week recovery period. Bronchoalveolar lavage fluid (BALF) analysis of neutrophil percentages and enzyme levels like γ-GT, ALP and LDH indicated that pulmonary inflammation was significantly less in HC groups compared to 3R4F groups. In conclusion, HC demonstrated significantly lower biological effects compared to 3R4F, based on the BALF parameters and histopathology.
Inhalation Toxicology | 2011
Hiroyuki Tsuji; Hitoshi Fujimoto; Daiki Matsuura; Tomoki Nishino; K. Monica Lee; Roger A. Renne; Hiroyuki Yoshimura
Cigarette smoke exposures in mice have been conducted under various exposure conditions using different strains as animal models of smoke-related diseases. We exposed cigarette smoke to two strains of mice [C57BL/6J (C57) and AKR/J (AKR)] under two different exposure regimens (1 h or 4 h/day) at equivalent daily exposure amount (concentration × time). After 2 weeks exposure, mice were evaluated using exposure markers and biological responses. Smoke exposure suppressed respiratory parameters dependent on exposure concentration. The 1-h regimen groups generally showed a greater degree of respiratory suppression and relatively lower exposure markers of urinary nicotine metabolites than the corresponding 4-h regimen groups. Tidal volume was more suppressed in AKR compared to C57, while respiratory rate was more suppressed in C57. Plasma exposure markers and respiratory parameters suggested that C57 inhaled more volume of smoke than AKR. Changes in bronchoalveolar lavage fluid (BALF) cytology and enzyme parameters were most noticeable in the 1 h AKR groups. In BALF cytokine concentration, TARC concentration in C57 was higher than AKR, while KC and MCP-1 in AKR were higher than C57. Relative lung/body weight ratio in smoke-exposed C57 was generally higher, as well as the incidence and severity of lesions in respiratory organs compared to AKR. In summary, C57 appeared to inhale relatively more smoke and displayed greater inflammatory changes in respiratory tract than AKR. Comparison of exposure regimens suggests that a longer exposure duration at lower WTPM concentration might deliver a larger dose of smoke than a shorter exposure duration at higher WTPM concentration.
Journal of Toxicologic Pathology | 2013
Hiroyuki Tsuji; Hitoshi Fujimoto; Daiki Matsuura; Tomoki Nishino; K. Monica Lee; Hiroyuki Yoshimura
A variety of exposure regimens of cigarette smoke have been used in animal models of lung diseases. In this study, we compared biological responses of smoke exposure in rats, using different smoke concentrations (wet total particulate matter [WTPM]), daily exposure durations, and total days of exposure. As a range-finding acute study, we first compared pulmonary responses between SD and F344 strains after a single nose-only exposure to mainstream cigarette smoke or LPS. Secondly, F344 rats were exposed to cigarette smoke for 2 or 13 weeks under the comparable daily exposure dose (WTPM concentration x daily exposure duration; according to Haber’s rule) but at a different WTPM concentration or daily exposure duration. Blood carboxylhemoglobin was increased linearly to the WTPM concentration, while urinary nicotine plus cotinine value was higher for the longer daily exposure than the corresponding shorter exposure groups. Gamma glutamyl transferase activity in bronchoalveolar lavage fluid (BALF) was increased dose dependently after 2 and 13 weeks of cigarette smoke exposure, while the neutrophil content in BALF was not increased notably. Smoke-exposed groups showed reduced body weight gain and increased relative lung and heart weights. While BALF parameters and the relative lung weights suggest pulmonary responses, histopathological examination showed epithelial lesions mainly in the upper respiratory organs (nose and larynx). Collectively, the results indicate that, under the employed study design, the equivalent daily exposure dose (exposure concentration x duration) induces equivalent pulmonary responses in rats.
Inhalation Toxicology | 2015
Hiroyuki Tsuji; Hitoshi Fujimoto; Kyeonghee M. Lee; Roger A. Renne; Asuka Iwanaga; Chigusa Okubo; Saeko Onami; Ayako Koizumi Nomura; Tomoki Nishino; Hiroyuki Yoshimura
Abstract Female C57BL/6 mice were exposed to mainstream cigarette smoke at 600 μg WTPM/L, 4 h/day and 5 days/week for up to 52 weeks. At 26, 52 and 65 weeks (52 weeks of exposure plus 13 weeks of no exposure), lungs were assessed for inflammation, function, histopathology and morphometry. Structural changes were observed and accompanied by altered lung function at 26 and 52 weeks (e.g. increase of static compliance and hysteresis, and decrease of elastance). Lung morphometry quantified significant increase in airspace enlargement at 52 weeks. Chronic smoke exposure induced inflammation in respiratory organs, e.g. mixed inflammatory cell infiltrates, perivascular lymphocyte infiltrates and pigmented alveolar macrophages in the lungs. Minimal or mild alveolar emphysema was diagnosed in 70% by 26 weeks or 80% by 52 weeks. After 13 weeks of recovery, most biochemical, histopathological and morphometrical alterations were restored, while emphysema was observed to persist at 18% incidence by 65 weeks. In conclusion, the employed exposure conditions induced emphysematous changes in the lungs, accompanied by altered lung function and morphological/histopathological changes. Following the 13 weeks of no exposure, morphological changes persisted, although some functional/biochemical alterations regressed.
Archive | 1991
Tetsuji Yamada; Tomoki Nishino; Tomonori Shiraishi; Tom Gaffney; Frank Roberto; Curt J. Palm; Hachiro Oku; Tsune Kosuge
Various disease symptoms in plants are caused by infection with microorganisms. Among the most well-characterized, on a molecular basis, is hyperplasia. Plant tumors incited by bacterial pathogens include crown gall (Agrobacterium tumefaciens), olive knot (Pseudomonas savastanoi), bacterial witches’ broom (Corynebacterium fascians), bacterial gall of Japanese wisteria (Erwinia milletiae), and others (Nester et al., 1981; Nester et al., 1984; Kemper et al., 1985; Kosuge et al., 1983; Kado, 1984; Okajima et al., 1974). It has been shown that these hyperplastic tissues arise because of hormone imbalances, mainly in indoleacetic acid (IAA) and cytokinin. These imbalances arise in the host plant after bacterial infection.Dedicated to the memory of Dr. Tsune Kosuge (who died on 13 March 1988).
Biological Control | 1997
Seiko Imaizumi; Tomoki Nishino; Katsuhiro Miyabe; Takane Fujimori; Masao Yamada
Japanese Journal of Phytopathology | 1995
Tomoki Nishino; Seiko Imaizumi; Katsuhiro Miyabe; Masao Yamada; Masao Goto
Archive | 1994
Seiko Imaizumi; Masao Yamada; Tomoki Nishino