Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoko Jindo is active.

Publication


Featured researches published by Tomoko Jindo.


Nature | 2007

The medaka draft genome and insights into vertebrate genome evolution

Masahiro Kasahara; Kiyoshi Naruse; Shin Sasaki; Yoichiro Nakatani; Wei Qu; Budrul Ahsan; Tomoyuki Yamada; Yukinobu Nagayasu; Koichiro Doi; Yasuhiro Kasai; Tomoko Jindo; Daisuke Kobayashi; Atsuko Shimada; Atsushi Toyoda; Yoko Kuroki; Asao Fujiyama; Takashi Sasaki; Atsushi Shimizu; Shuichi Asakawa; Nobuyoshi Shimizu; Shin-ichi Hashimoto; Jun Yang; Yongjun Lee; Kouji Matsushima; Sumio Sugano; Mitsuru Sakaizumi; Takanori Narita; Kazuko Ohishi; Shinobu Haga; Fumiko Ohta

Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats. Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published, analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination and developmental genetics. In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including ∼2,900 new genes, using 5′-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of ∼50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.


Mechanisms of Development | 2004

Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics

Tetsuaki Kimura; Tomoko Jindo; Takanori Narita; Kiyoshi Naruse; Daisuke Kobayashi; Tadasu Shin-I; Tadao Kitagawa; Takuya F. Sakaguchi; Hiroshi Mitani; Akihiro Shima; Yuji Kohara; Hiroyuki Takeda

The medaka is becoming an attractive model organism for the study of vertebrate early development and organogenesis and large-scale mutagenesis projects that are aimed at creating developmentally defective mutants are now being conducted by several groups in Japan. To strengthen the study of medaka developmental genetics, we have conducted a large-scale isolation of ESTs from medaka embryos and developed tools that facilitate mutant analysis. In this study, we have characterized a total of 132,082 sequences from both ends of cloned insert cDNAs from libraries generated at different stages of medaka embryo development. Clustering analysis with 3-prime sequences finally identified a total of 12,429 clusters. As a pilot analysis, 924 clusters were subjected to in situ hybridization to determine the spatial localization of their transcripts. Using EST sequence data generated in the present study, a 60-mer oligonucleotide microarray with 8,091 unigenes (Medaka Microarray 8K) was constructed and tested for its usefulness in expression profiling. Furthermore, we have developed a rapid and reliable mutant mapping system using a set of mapped EST markers (M-marker 2003) that covers the entire medaka genome. These resources will accelerate medaka mutant analyses and make an important contribution to the medaka genome project.


Development Growth & Differentiation | 2007

Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer's vesicle

Motoki Hojo; Shigeo Takashima; Daisuke Kobayashi; Akira Sumeragi; Atsuko Shimada; Tatsuya Tsukahara; Hayato Yokoi; Takanori Narita; Tomoko Jindo; Takahiro Kage; Tadao Kitagawa; Tetsuaki Kimura; Koshin Sekimizu; Akimitsu Miyake; Davin H. E. Setiamarga; Ryohei Murakami; Sachiko Tsuda; Shinya Ooki; Ken Kakihara; Kiyoshi Naruse; Hiroyuki Takeda

Recent studies have revealed that a cilium‐generated liquid flow in the node has a crucial role in the establishment of the left‐right (LR) axis in the mouse. In fish, Kupffers vesicle (KV), a teleost‐specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up‐regulated charon expression was observed in flow‐defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.


Nucleic Acids Research | 2007

UTGB/medaka: genomic resource database for medaka biology

Budrul Ahsan; Daisuke Kobayashi; Tomoyuki Yamada; Masahiro Kasahara; Shin Sasaki; Taro I. Saito; Yukinobu Nagayasu; Koichiro Doi; Yoichiro Nakatani; Wei Qu; Tomoko Jindo; Atsuko Shimada; Kiyoshi Naruse; Atsushi Toyoda; Yoko Kuroki; Asao Fujiyama; Takashi Sasaki; Atsushi Shimizu; Shuichi Asakawa; Nobuyoshi Shimizu; Shin-ichi Hashimoto; Jun Yang; Yongjun Lee; Kouji Matsushima; Sumio Sugano; Mitsuru Sakaizumi; Takanori Narita; Kazuko Ohishi; Shinobu Haga; Fumiko Ohta

Medaka (Oryzias latipes) is a small egg-laying freshwater teleost native to East Asia that has become an excellent model system for developmental genetics and evolutionary biology. The draft medaka genome sequence (700 Mb) was reported in June 2007, and its substantial genomic resources have been opened to the public through the University of Tokyo Genome Browser Medaka (UTGB/medaka) database. This database provides basic genomic information, such as predicted genes, expressed sequence tags (ESTs), guanine/cytosine (GC) content, repeats and comparative genomics, as well as unique data resources including (i) 2473 genetic markers and experimentally confirmed PCR primers that amplify these markers, (ii) 142 414 bacterial artificial chromosome (BAC) and 217 344 fosmid end sequences that amount to 15.0- and 11.1-fold clone coverage of the entire genome, respectively, and were used for draft genome assembly, (iii) 16 519 460 single nucleotide polymorphisms (SNPs), and 2 859 905 insertions/deletions detected between two medaka inbred strain genomes and (iv) 841 235 5′-end serial analyses of gene-expression (SAGE) tags that identified 344 266 transcription start sites on the genome. UTGB/medaka is available at: http://medaka.utgenome.org/


Development Growth & Differentiation | 2006

Development of the endoderm and gut in medaka, Oryzias latipes

Daisuke Kobayashi; Tomoko Jindo; Kiyoshi Naruse; Hiroyuki Takeda

We performed an extensive analysis of endodermal development and gut tube morphogenesis in the medaka embryo by histology and in situ hybridization. The markers used in these analyses included sox17, sox32, foxA2, gata‐4, ‐5, ‐6 and shh. sox17, sox32, foxA2, and gata‐5 and ‐6 are expressed in the early endoderm to the onset of gut tube formation. Sections of medaka embryos hybridized with foxA2, a pan‐endodermal marker during gut morphogenesis, demonstrated that gut tube formation is initiated in the anterior portion and that the anterior and mid/posterior gut undergo distinct morphogenetic processes. Tube formation in the anterior endoderm that is fated to the pharynx and esophagus is much delayed and appears to be independent of gut morphogenesis. The overall aspects of medaka gut development are similar to those of zebrafish, except that zebrafish tube formation initiates at both the anterior and posterior portions. Our results therefore describe both molecular and morphological aspects of medaka digestive system development that will be necessary for the characterization of medaka mutants.


PLOS ONE | 2009

Polycystic Kidney Disease in the Medaka (Oryzias latipes) pc Mutant Caused by a Mutation in the Gli-Similar3 (glis3) Gene

Hisashi Hashimoto; Rieko Miyamoto; Naoki Watanabe; Dai Shiba; Kenjiro Ozato; Chikako Inoue; Yuko Kubo; Akihiko Koga; Tomoko Jindo; Takanori Narita; Kiyoshi Naruse; Kazuko Ohishi; Keiko Nogata; Tadasu Shin-I; Shuichi Asakawa; Nobuyoshi Shimizu; Tomotsune Miyamoto; Toshio Mochizuki; Takahiko Yokoyama; Hiroshi Hori; Hiroyuki Takeda; Yuji Kohara; Yuko Wakamatsu

Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients.


Developmental Dynamics | 2007

Phenotypic analysis of a novel chordin mutant in medaka.

Shigeo Takashima; Atsuko Shimada; Daisuke Kobayashi; Hayato Yokoi; Takanori Narita; Tomoko Jindo; Takahiro Kage; Tadao Kitagawa; Tetsuaki Kimura; Koshin Sekimizu; Akimitsu Miyake; Davin H. E. Setiamarga; Ryohei Murakami; Sachiko Tsuda; Shinya Ooki; Ken Kakihara; Motoki Hojo; Kiyoshi Naruse; Hiroshi Mitani; Akihiro Shima; Yuji Ishikawa; Kazuo Araki; Yumiko Saga; Hiroyuki Takeda

We have isolated and characterized a ventralized mutant in medaka (the Japanese killifish; Oryzias latipes), which turned out to have a mutation in the chordin gene. The mutant exhibits ventralization of the body axis, malformation of axial bones, over‐bifurcation of yolk sac blood vessels, and laterality defects in internal organs. The mutant exhibits variability of phenotypes, depending on the culture temperature, from embryos with a slightly ventralized phenotype to those without any head and trunk structures. Taking advantages of these variable and severe phenotypes, we analyzed the role of Chordin‐dependent tissues such as the notochord and Kupffers vesicle (KV) in the establishment of left–right axis in fish. The results demonstrate that, in the absence of the notochord and KV, the medaka lateral plate mesoderm autonomously and bilaterally expresses spaw gene in a default state. Developmental Dynamics 236:2298–2310, 2007.


Development Growth & Differentiation | 2008

Mutation in the abcb7 gene causes abnormal iron and fatty acid metabolism in developing medaka fish.

Akimitsu Miyake; Shin-ichi Higashijima; Daisuke Kobayashi; Takanori Narita; Tomoko Jindo; Davin H. E. Setiamarga; Satoshi Ohisa; Nobuaki Orihara; Kenta Hibiya; Sayaka Konno; Sae Sakaguchi; Kyohei Horie; Yoshiyuki Imai; Kiyoshi Naruse; Akira Kudo; Hiroyuki Takeda

The medaka fish (Oryzias latipes) is an emerging model organism for which a variety of unique developmental mutants have now been generated. Our recent mutagenesis screening of the medaka isolated a unique mutant that develops a fatty liver at larval stages. Positional cloning identified the responsible gene as medaka abcb7. Abcb7, a mitochondrial ABC (ATP binding cassette) half‐transporter, has been implicated in iron metabolism. Recently, human Abcb7 was found to be mutated in X‐linked sideroblastic anemia with cerebellar ataxia (XLSA/A). The homozygous medaka mutant exhibits abnormal iron metabolism in erythrocytes and accumulation of lipid in the liver. Microarray and in situ hybridization analyses demonstrated that the expression of genes involved in iron and lipid metabolisms are both affected in the mutant liver, suggesting novel roles of Abcb7 in the development of physiologically functional liver. The medaka abcb7 mutant thus could provide insights into the pathogenesis of XLSA/A as well as the normal function of the gene.


Developmental Biology | 2011

Retinoic acid-dependent establishment of positional information in the hindbrain was conserved during vertebrate evolution

Akiko Ishioka; Tomoko Jindo; Toshihiro Kawanabe; Kohei Hatta; Mst. Shahnaj Parvin; Masataka Nikaido; Yuri Kuroyanagi; Hiroyuki Takeda; Kyo Yamasu

Zebrafish hoxb1b is expressed during epiboly in the posterior neural plate, with its anterior boundary at the prospective r4 region providing a positional cue for hindbrain formation. A similar function and expression is known for Hoxa1 in mice, suggesting a shared regulatory mechanism for hindbrain patterning in vertebrate embryos. To understand the evolution of the regulatory mechanisms of key genes in patterning of the central nervous system, we examined how hoxb1b transcription is regulated in zebrafish embryos and compared the regulatory mechanisms between mammals and teleosts that have undergone an additional genome duplication. By promoter analysis, we found that the expression of the reporter gene recapitulated hoxb1b expression when driven in transgenic embryos by a combination of the upstream 8.0-kb DNA and downstream 4.6-kb DNA. Furthermore, reporter expression expanded anteriorly when transgenic embryos were exposed to retinoic acid (RA) or LiCl, or injected with fgf3/8 mRNA, implicating the flanking DNA examined here in the responsiveness of hoxb1b to posteriorizing signals. We further identified at least two functional RA responsive elements in the downstream DNA that were shown to be major regulators of early hoxb1b expression during gastrulation, while the upstream DNA, which harbors repetitive sequences with apparent similarity to the autoregulatory sequence of mouse Hoxb1, contributed only to later hoxb1b expression, during somitogenesis. Possible implications in vertebrate evolution are discussed based on these findings.


Developmental Biology | 2007

Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships

Hayato Yokoi; Atsuko Shimada; Matthias Carl; Shigeo Takashima; Daisuke Kobayashi; Takanori Narita; Tomoko Jindo; Tetsuaki Kimura; Tadao Kitagawa; Takahiro Kage; Atsushi Sawada; Kiyoshi Naruse; Shuichi Asakawa; Nobuyoshi Shimizu; Hiroshi Mitani; Akihiro Shima; Makiko Tsutsumi; Hiroshi Hori; Joachim Wittbrodt; Yumiko Saga; Yuji Ishikawa; Kazuo Araki; Hiroyuki Takeda

Collaboration


Dive into the Tomoko Jindo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Kobayashi

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asao Fujiyama

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin Sasaki

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Tadasu Shin-I

National Institute of Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge