Tomoko Obara
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomoko Obara.
Nature Genetics | 2005
Matias Simons; Joachim Gloy; Athina Ganner; Axel Bullerkotte; Mikhail Bashkurov; Corinna Krönig; Bernhard Schermer; Thomas Benzing; Olga A. Cabello; Andreas Jenny; Marek Mlodzik; Bozena Polok; Wolfgang Driever; Tomoko Obara; Gerd Walz
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development.
Nature Cell Biology | 2011
Sehyun Kim; Norann A. Zaghloul; Ekaterina Bubenshchikova; Edwin C. Oh; Susannah Rankin; Nicholas Katsanis; Tomoko Obara; Leonidas Tsiokas
The primary cilium is an antenna-like organelle that is dynamically regulated during the cell cycle. Ciliogenesis is initiated as cells enter quiescence, whereas resorption of the cilium precedes mitosis. The mechanisms coordinating ciliogenesis with the cell cycle are unknown. Here we identify the centrosomal protein Nde1 (nuclear distribution gene E homologue 1) as a negative regulator of ciliary length. Nde1 is expressed at high levels in mitosis, low levels in quiescence and localizes at the mother centriole, which nucleates the primary cilium. Cells depleted of Nde1 have longer cilia and a delay in cell cycle re-entry that correlates with ciliary length. Knockdown of Nde1 in zebrafish embryos results in increased ciliary length, suppression of cell division, reduction of the number of cells forming the Kupffers vesicle and left–right patterning defects. These data suggest that Nde1 is an integral component of a network coordinating ciliary length with cell cycle progression and have implications for understanding the transition from a quiescent to a proliferative state.
The EMBO Journal | 2010
Aurélie Giamarchi; Shuang Feng; Lise Rodat-Despoix; Yaoxian Xu; Ekaterina Bubenshchikova; Linda J. Newby; Jizhe Hao; Christelle Gaudioso; Marcel Crest; Andrei N. Lupas; Eric Honoré; Michael P. Williamson; Tomoko Obara; Albert C.M. Ong; Patrick Delmas
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin‐1 (PC1) and polycystin‐2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C‐terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self‐oligomerization. Dimerization‐defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM‐endoplasmic reticulum (ER) junctions but could still function as ER Ca2+‐release channels. Expression of dimerization‐defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C‐terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER‐localized PC2 channels. Mutations that affect PC2 C‐terminal homo‐ and heteromerization are the likely molecular basis of cyst formation in ADPKD.
Journal of Biological Chemistry | 2008
Shuang Feng; Genevieve Okenka; Chang Xi Bai; Andrew J. Streets; Linda J. Newby; Brett T. DeChant; Leonidas Tsiokas; Tomoko Obara; Albert C.M. Ong
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a non-selective calcium channel. PC2 has been found to form oligomers in native tissues suggesting that it may form functional homo- or heterotetramers with other subunits, similar to other TRP channels. Our experiments unexpectedly revealed that PC2 mutant proteins lacking the known C-terminal dimerization domain were still able to form oligomers and co-immunoprecipitate full-length PC2, implying the possible existence of a proximal dimerization domain. Using yeast two-hybrid and biochemical assays, we have mapped an alternative dimerization domain to the N terminus of PC2 (NT2-1-223, L224X). Functional characterization of this domain demonstrated that it was sufficient to induce cyst formation in zebrafish embryos and inhibit PC2 surface currents in mIMCD3 cells probably by a dominant-negative mechanism. In summary, we propose a model for PC2 assembly as a functional tetramer which depends on both C- and N-terminal dimerization domains. These results have significant implications for our understanding of PC2 function and disease pathogenesis in ADPKD and provide a new strategy for studying PC2 function.
Frontiers in Bioscience | 2008
Oliver Wessely; Tomoko Obara
The presence of cilia in many vertebrate cell types and its function has been ignored for many years. Only in the past few years has its importance been rediscovered. In part, this was triggered by the realization that many gene products mutated in polycystic kidney diseases are localized to cilia and dysfunctional cilia result in kidney disease. Another breakthrough was the observation that the establishment of the left-right body axis is dependent on cilia function. Since then, many other developmental paradigms have been shown to rely on cilia-dependent signaling. In addition to mouse and Chlamydomonas, lower vertebrate model systems such as zebrafish, medaka and Xenopus have provided important new insights into cilia signaling and its role during embryonic development. This review will summarize those studies. We will also illustrate how these lower vertebrates are promising model systems for future studies defining the physiological function of cilia during organogenesis and disease pathophysiology.
Biology Open | 2012
Ekaterina Bubenshchikova; Koichiro Ichimura; Yayoi Fukuyo; Rebecca Powell; Chaonan Hsu; Stephen O. Morrical; John R. Sedor; Tatsuo Sakai; Tomoko Obara
Summary Defects in cilia and basal bodies function are linked to ciliopathies, which result in kidney cyst formation. Recently, cell division defects have been observed in cystic kidneys, but the underlying mechanisms of such defects remain unclear. Wtip is an LIM domain protein of the Ajuba/Zyxin family, but its role in ciliogenesis during embryonic development has not been previously described. We report Wtip is enriched in the basal body and knockdown of wtip leads to pronephric cyst formation, cloaca malformation, hydrocephalus, body curvature, and pericardial edema. We additionally show that wtip knockdown embryos display segment-specific defects in the pronephros: mitotic spindle orientation defects are observed only in the anterior and middle pronephros; cloaca malformation is accompanied by a reduced number of ciliated cells; and ciliated cells lack the striated rootlet that originates from basal bodies, which results in a lack of cilia motility. Our data suggest that loss of Wtip function phenocopies Vangl2 loss of function, a core planar cell polarity (PCP) protein located in the basal body protein. Furthermore, we demonstrate that wtip and vangl2 interact genetically. Taken together, our results indicate that in zebrafish, Wtip is required for mitotic spindle orientation in the anterior and middle of the pronephros, cloaca morphogenesis, and PCP, which may underlie the molecular etiology of ciliopathies.
PLOS ONE | 2012
Koichiro Ichimura; Ekaterina Bubenshchikova; Rebecca Powell; Yayoi Fukuyo; Tomomi Nakamura; Uyen Tran; Shoji Oda; Minoru Tanaka; Oliver Wessely; Hidetake Kurihara; Tatsuo Sakai; Tomoko Obara
The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.
Molecular Medicine Reports | 2014
Yayoi Fukuyo; Tomomi Nakamura; Ekaterina Bubenshchikova; Rebecca Powell; Takashi Tsuji; Ralf Janknecht; Tomoko Obara
The slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and is crucial in the formation of the filtration barrier in the renal glomeruli. Zebrafish Nephrin and Podocin are important in the formation of the podocyte SD and mutations in NEPHRIN and PODOCIN genes cause human nephrotic syndrome. In the present study, the zebrafish Podocin protein was observed to be predominantly localized in the pronephric glomerular podocytes, as previously reported for Nephrin. To understand the function of Podocin and Nephrin in zebrafish, splice-blocking morpholino antisense oligonucleotides were used. Knockdown of Podocin or Nephrin by this method induced pronephric glomerular hypoplasia with pericardial edema. Human NEPHRIN and PODOCIN mRNA rescued this glomerular phenotype, however, the efficacy of the rescues was greatly reduced when mRNA-encoding human disease-causing NEPHRIN-R1109X and PODOCIN-R138Q were used. Furthermore, an association between zebrafish Nephrin and Podocin proteins was observed. Notably, Podocin-R150Q, corresponding to human PODOCIN-R138Q, markedly interacted with NEPHRIN compared with wild-type PODOCIN, suggesting that this strong binding capacity of mutated PODOCIN impairs the transport of NEPHRIN and PODOCIN out of the endoplasmic reticulum. The results suggest that the functions of Nephrin and Podocin are highly conserved between the zebrafish pronephros and mammalian metanephros. Accordingly, the zebrafish pronephros may provide a useful tool for analyzing disease-causing gene mutations in human kidney disorders.
Journal of Histochemistry and Cytochemistry | 2013
Koichiro Ichimura; Yayoi Fukuyo; Tomomi Nakamura; Rebecca Powell; Ttatsuo Sakai; Ralf Janknecht; Tomoko Obara
Slit diaphragm (SD) is a highly specialized intercellular junction between podocyte foot processes and plays a crucial role in the formation of the filtration barrier. In this study, we examined the developmental localization of Nephrin, an essential component of SD, in the pronephric glomerulus of zebrafish and medaka. In the mature glomerulus of both fish, Nephrin is localized along the glomerular basement membrane as seen in mammals, indicating that Nephrin is localized at the SD. Interestingly, Nephrin was detected already in immature podocytes before the SD and foot processes started to form in both fish. Nephrin was localized along the cell surface of immature podocytes but as different localization patterns. In zebrafish, Nephrin signal bordered the lateral membrane of podocytes, which were columnar in shape, as in rat immature podocytes. However, in medaka immature podocytes, Nephrin was localized in a punctate pattern among podocyte cell bodies. These findings suggest that Nephrin needs to be integrated to the membrane before the formation of the SD and then moves to the proper site to form the SD. Furthermore, a podocyte-specific marker, such as Nephrin, should be a useful tool for the future analysis of pronephric glomerular development in fish mutants and morphants.
Biochemical and Biophysical Research Communications | 2013
Koichiro Ichimura; Yusuke Kawashima; Tomomi Nakamura; Rebecca Powell; Yuya Hidoh; Shuji Terai; Isao Sakaida; Yoshio Kodera; Takashi Tsuji; Jian Xing Ma; Tatsuo Sakai; Hiroyuki Matsumoto; Tomoko Obara
Obesity, an ongoing significant public health problem, is a part of complex disease characterized as metabolic syndrome. Medaka and zebrafish are useful aquatic experimental animals widely used in the field of toxicology and environmental health sciences and as a human disease models. In medaka, simple feeding of a high fat diet (HFD) can induce body weight gain, excessive accumulation of visceral adipose tissue, hyperglycemia, hyperlipidemia, and steatohepatitis, which mimics human metabolic syndrome. In the present study, to explore the possibility that the adult medaka fed with HFD (HFD-medaka) can be used as an animal model for human metabolic syndrome-associated glomerular disease, including obesity-related glomerulopathy (ORG), we analyzed structural alterations and protein expression in the mesonephric kidney of HFD-medaka. We found that the histopathology was consistent with glomerulomegaly accompanied by the dilation of glomerular capillaries and proliferative expansion of the mesangium, a condition partially comparable to human ORG. Moreover, expressions of several kinds of kidney disease-related proteins (such as MYH9, SM22α) were significantly elevated. Thus, the HFD-medaka has a high potential as an animal model useful for exploring the mechanism underling human ORG.