Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomomi Fujisawa is active.

Publication


Featured researches published by Tomomi Fujisawa.


Diabetologia | 1998

Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy

Tomomi Fujisawa; Hiroshi Ikegami; Yoshihiko Kawaguchi; Yoichi Hamada; Hironori Ueda; Maki Shintani; Masahiro Fukuda; Toshio Ogihara

Summary An insertion/deletion (I/D) polymorphism in the angiotensin-converting enzyme (ACE) gene has repeatedly been shown to be associated with ischaemic heart disease, but the association of this genetic marker with diabetic microangiopathy is controversial. To assess the association of the genotypes with the development of diabetic nephropathy or retinopathy, we performed a meta-analysis of data from the literature, using Mantel-Haenszel method followed by the Breslow-Day test for assessing homogeneity among data. In a total of 4773 diabetic patients from 18 studies with (n = 2495) and without (n = 2278) renal complications, the D allele was significantly associated with diabetic nephropathy (p < 0.0001) in a dominant model (summary odds ratio 1.32, 95 % confidence interval: 1.15 to 1.51). There was no significant evidence against homogeneity of the odds ratios (χ2 = 18.9, 20 df; p = 0.53). The association was significant both in non-insulin-dependent (p < 0.005) and in insulin-dependent diabetes mellitus (p < 0.05). Likewise, in a total of 2010 diabetic patients with (n = 1008) and without (n = 1002) retinopathy, there was no association of the I/D polymorphism with diabetic retinopathy. These data suggest that the ACE I/D polymorphism affects the risk for diabetic nephropathy, but not for diabetic retinopathy. [Diabetologia (1998) 41: 47–53]


Diabetes | 2009

Confirmation of Multiple Risk Loci and Genetic Impacts by a Genome-Wide Association Study of Type 2 Diabetes in the Japanese Population

Fumihiko Takeuchi; Masakuni Serizawa; Ken Yamamoto; Tomomi Fujisawa; Eitaro Nakashima; Keizo Ohnaka; Hiroshi Ikegami; Takao Sugiyama; Tomohiro Katsuya; Makoto Miyagishi; Naoki Nakashima; Hajime Nawata; Jiro Nakamura; Suminori Kono; Ryoichi Takayanagi; Norihiro Kato

OBJECTIVE To identify novel type 2 diabetes gene variants and confirm previously identified ones, a three-staged genome-wide association study was performed in the Japanese population. RESEARCH DESIGN AND METHODS In the stage 1 scan, we genotyped 519 case and 503 control subjects with 482,625 single nucleotide polymorphism (SNP) markers; in the stage 2 panel comprising 1,110 case subjects and 1,014 control subjects, we assessed 1,456 SNPs (P < 0.0025, stage 1); additionally to direct genotyping, 964 healthy control subjects formed the in silico control panel. Along with genome-wide exploration, we aimed to replicate the disease association of 17 SNPs from 16 candidate loci previously identified in Europeans. The associated and/or replicated loci (23 SNPs; P < 7 × 10–5 for genome-wide exploration and P < 0.05 for replication) were examined in the stage 3 panel comprising 4,000 case subjects and 12,569 population-based samples, from which 4,889 nondiabetic control subjects were preselected. The 12,569 subjects were used for overall risk assessment in the general population. RESULTS Four loci—1 novel with suggestive evidence (PEPD on 19q13, P = 1.4 × 10–5) and three previously reported—were identified; the association of CDKAL1, CDKN2A/CDKN2B, and KCNQ1 were confirmed (P < 10–19). Moreover, significant associations were replicated in five other candidate loci: TCF7L2, IGF2BP2, SLC30A8, HHEX, and KCNJ11. There was substantial overlap of type 2 diabetes susceptibility genes between the two populations, whereas effect size and explained variance tended to be higher in the Japanese population. CONCLUSIONS The strength of association was more prominent in the Japanese population than in Europeans for more than half of the confirmed type 2 diabetes loci.


Diabetologia | 1996

Association of Trp64Arg mutation of the β3-adrenergic-receptor with NIDDM and body weight gain

Tomomi Fujisawa; Hiromasa Ikegami; Eiji Yamato; Kiyoshi Takekawa; Yusuke Nakagawa; Yoichi Hamada; T. Oga; Hironori Ueda; Maki Shintani; Masahiro Fukuda; Toshio Ogihara

SummaryA possible pathogenic mutation in the Β3-adrenergic-receptor gene (Trp64Arg) has been reported to be associated with an earlier age of onset of non-insulin-dependent diabetes mellitus (NIDDM) and clinical features of the insulin resistance syndrome in Pima Indian, Finnish and French subjects. Since marked heterogeneity has been reported in the association of mutations of candidate genes with NIDDM between Japanese and other ethnic groups, we investigated the association of Trp64Arg with NIDDM in Japanese subjects. The allele frequency of the mutation (Arg) was slightly, but not significantly, higher in NIDDM than in control subjects (70 out of 342 alleles [20.5%] vs 40 out of 248 [16.1%], respectively, p>0.2). When our data were combined with those of Pima Indian and Finnish subjects, however, the Arg/Arg genotype was significantly associated with NIDDM as compared with the other two genotypes (p<0.005, relative risk [RR] 2.13, 95% confidence interval [CI] 1.28–3.55). The Arg allele was also associated with NIDDM (p<0.05, RR 1.27, 95% CI 1.06–1.52). Japanese subjects homozygous for the mutation had a significantly higher body mass index (mean ± SD∶25.5±3.9 kg/ m2) than heterozygotes (22.6±4.1, p<0.05) and normal homozygotes (22.8±3.8, p<0.05). NIDDM patients homozygous for the mutation tended to have an earlier age of onset of NIDDM than those with other genotypes. These data suggest that the Trp64Arg mutation not only contributes to weight gain and age-at-onset of NIDDM but is also associated with susceptibility to NIDDM.


Diabetes Care | 1995

Angiotensin I-Converting Enzyme Gene Polymorphism Is Associated With Myocardial Infarction, but Not With Retinopathy or Nephropathy, in NIDDM

Tomomi Fujisawa; Hiroshi Ikegami; Gong-Qing Shen; Eiji Yamato; Kiyoshi Takekawa; Yusuke Nakagawa; Yoichi Hamada; Hironori Ueda; Hiromi Rakugi; Jitsuo Higaki; Mitsuru Ohishi; Kenshi Fujii; Masakatsu Fukuda; Toshio Ogihara

OBJECTIVE To clarify the relationship between the angiotensin I-converting enzyme (ACE) gene polymorphism and diabetic micro- and macroangiopathy in patients with non-insulin-dependent diabetes mellitus (NIDDM). RESEARCH DESIGN AND METHODS We examined 267 NIDDM patients with various stages of diabetic retinopathy, 61 patients with myocardial infarction (MI), and 136 patients without MI. An insertion/deletion polymorphism of the ACE gene was typed by polymerase chain reaction. RESULTS Although no association was found between ACE gene polymorphism and diabetic retinopathy or nephropathy, this polymorphism was associated with MI in the patients with NIDDM. Homozygotes for the deletion polymorphism (DD genotype) were found more frequently in diabetic patients with MI (31.1%) than in diabetic patients without ischemic heart disease (16.9%), with a relative risk of 2.22 (95% confidence interval 1.11–4.46, P = 0.024). CONCLUSION These data indicate that ACE gene polymorphism is associated with MI, but not with retinopathy or nephropathy, in patients with NIDDM and suggest that the ACE gene confers susceptibility to diabetic macroangiopathy but not to microangiopathy.


Diabetologia | 1995

The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity

Hironori Ueda; Hiromasa Ikegami; Eiji Yamato; Jian Fu; Masahiro Fukuda; Gong-Qing Shen; Yoshihiko Kawaguchi; Kiyoshi Takekawa; Yoshihiko Fujioka; Tomomi Fujisawa; Yusuke Nakagawa; Yoichi Hamada; Masao Shibata; Toshio Ogihara

SummaryThe NSY (Nagoya-Shibata-Yasuda) mouse was established as an inbred strain of mouse with spontaneous development of diabetes mellitus, by selective breeding for glucose intolerance from outbred Jcl∶ICR mice. NSY mice spontaneously develop diabetes mellitus in an age-dependent manner. The cumulative incidence of diabetes is 98% in males and 31% in females at 48 weeks of age. Neither severe obesity nor extreme hyperinsulinaemia is observed at any age in these mice. Glucose-stimulated insulin secretion was markedly impaired in NSY mice after 24 weeks of age. In contrast, fasting plasma insulin level was higher in male NSY mice than that in male C3H/He mice (545±73 vs 350±40 pmol/l, p<0.05, at 36 weeks of age). Pancreatic insulin content was higher in male NSY mice than that in male C3H/He mice (76±8 vs 52±5 ng/mg wet weight, p<0.05, at 36 weeks of age). Morphologically, no abnormal findings, such as hypertrophy or inflammatory changes in the pancreatic islets, were observed in NSY mice at any age. These data suggest that functional changes of insulin secretion in response to glucose from pancreatic beta cells may contribute to the development of non-insulin-dependent diabetes mellitus (NIDDM) in the NSY mouse. Although insulin sensitivity was not measured, fasting hyperinsulinaemia in NSY mice suggests that insulin resistance may also contribute to the pathogenesis of NIDDM. Since these findings are similar to the pathophysiologic features of human NIDDM patients, the NSY mouse is considered to be useful for investigating the pathogenesis and genetic predisposition to NIDDM.


Journal of Hypertension | 2004

A common polymorphism of uncoupling protein 2 gene is associated with hypertension

Quihe Ji; Hiroshi Ikegami; Tomomi Fujisawa; Yumiko Kawabata; Masaya Ono; Masanori Nishino; Mitsuru Ohishi; Tomohiro Katsuya; Hiromi Rakugi; Toshio Ogihara

Objectives The genes responsible for obesity are also candidate genes for obesity-related conditions, such as hypertension and type 2 diabetes. A functional polymorphism in the uncoupling protein 2 (UCP2) promoter has been reported to be associated with obesity in Caucasians. To clarify the contribution of this polymorphism to obesity and related conditions, we studied the association of the −866 G/A polymorphism of the UCP2 gene with obesity, hypertension and type 2 diabetes mellitus. Methods A total of 632 unrelated Japanese subjects were studied: 342 type 2 diabetic patients (among them, 158 patients complicated with hypertension), 156 hypertensive patients without diabetes mellitus and 134 control subjects. The −866 G/A polymorphism of UCP2 was determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP). Results The frequency of the minor A allele was significantly higher in Japanese than in Caucasians (48.9 versus 37.2%, P = 0.01). In contrast to the significant association with obesity in Caucasians, the polymorphism was not associated with obesity in Japanese. The polymorphism, however, was significantly associated with hypertension in Japanese (frequency of A allele: 51.8% in hypertensives versus 46.6% in normotensives, P < 0.05). No significant difference was observed in body mass index (BMI), fasting insulin level or HOMA-R between patients with different genotypes. Conclusion These data indicate that the polymorphism of the UCP2 gene is associated with hypertension, and suggest the possibility of UCP2 as a target molecule for studies on the etiology and treatment of hypertension.


Human Immunology | 2000

Age-related association of MHC class I chain-related gene A (MICA) with type 1 (insulin-dependent) diabetes mellitus

Yumiko Kawabata; Hiroshi Ikegami; Yoshihiko Kawaguchi; Tomomi Fujisawa; Mizuo Hotta; Hironori Ueda; Maki Shintani; Koji Nojima; Masaya Ono; Masanori Nishino; Hidenori Taniguchi; Shinsuke Noso; Kazunori Yamada; Naru Babaya; Toshio Ogihara

To assess the contribution of the HLA class I region to susceptibility to and heterogeneity of type 1 diabetes, we investigated the association of polymorphism of MHC class I chain-related gene A (MICA) with age-at-onset as well as susceptibility to type 1 diabetes. One hundred one Japanese patients and 110 healthy control subjects were studied. The frequency of A4 allele was significantly higher and that of A6 allele was significantly lower in patients than in control subjects. The frequency of A5.1 allele was highest in early-onset patients (23.0%), intermediate in intermediate-onset patients (9.2%) and lowest in late-onset patients (7.7%) (trend chi-squared test, p = 0.0098). A5. 1 allele was strongly associated with HLA-B7 and Cw7, suggesting that MICA*A5.1-B7-Cw7 haplotype contains a gene responsible for age-at-onset. A4 allele was associated with a susceptible haplotype, DR4-DQB1*0401, and A6 allele was associated with a protective haplotype, DR2-DQB1*0601, suggesting that the association of MICA with type 1 diabetes susceptibility may be due to linkage disequilibrium with class II haplotypes. These data suggest that MICA gene is associated with age-at-onset and that a gene (or genes) responsible for age-at-onset of type 1 diabetes is located in the HLA class I region, probably near the region of MICA-B-C.


Diabetologia | 2011

Association of genetic variants for susceptibility to obesity with type 2 diabetes in Japanese individuals

Fumihiko Takeuchi; Ken Yamamoto; Tomohiro Katsuya; Takao Sugiyama; Akihiro Fujioka; Masato Isono; Keizo Ohnaka; Tomomi Fujisawa; Eitaro Nakashima; Hiroshi Ikegami; Jiro Nakamura; Yukio Yamori; Shuhei Yamaguchi; Shotai Kobayashi; Toshio Ogihara; Ryoichi Takayanagi; N. Kato

Aims/hypothesisIn populations of East Asian descent, we performed a replication study of loci previously identified in populations of European descent as being associated with obesity measures such as BMI and type 2 diabetes.MethodsWe genotyped 14 single nucleotide polymorphisms (SNPs) from 13 candidate loci that had previously been identified by genome-wide association meta-analyses for obesity measures in Europeans. Genotyping was done in 18,264 participants from two general Japanese populations. For SNPs showing an obesity association in Japanese individuals, we further examined diabetes associations in up to 6,781 cases and 7,307 controls from a subset of the original, as well as from additional populations.ResultsSignificant obesity associations (p < 0.1 two-tailed, concordant direction with previous reports) were replicated for 11 SNPs from the following ten loci in Japanese participants: SEC16B, TMEM18, GNPDA2, BDNF, MTCH2, BCDIN3D–FAIM2, SH2B1–ATP2A1, FTO, MC4R and KCTD15. The strongest effect was observed at TMEM18 rs4854344 (p = 7.1 × 10−7 for BMI). Among the 11 SNPs showing significant obesity association, six were also associated with diabetes (OR 1.05−1.17; p = 0.04−2.4 × 10−7) after adjustment for BMI in the Japanese. When meta-analysed with data from the previous reports, the BMI-adjusted diabetes association was found to be highly significant for the FTO locus in East Asians (OR 1.13; 95% CI 1.09−1.18; p = 7.8 × 10−10) with substantial inter-ethnic heterogeneity (p = 0.003).Conclusions/interpretationWe confirmed that ten candidate loci are associated with obesity measures in the general Japanese populations. Six (of ten) loci exert diabetogenic effects in the Japanese, although relatively modest in size, and independently of increased adiposity.


Diabetologia | 2000

Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse.

Hironori Ueda; Hiroshi Ikegami; Yoshihiko Kawaguchi; Tomomi Fujisawa; Koji Nojima; Naru Babaya; Kazunori Yamada; Masao Shibata; Eiji Yamato; Toshio Ogihara

Aims/hypothesis. The Nagoya-Shibata-Yasuda (NSY) mouse closely mimics human Type II (non-insulin-dependent) diabetes mellitus in that the onset is age-dependent, the animals are not severely obese, and both insulin resistance and impaired insulin response to glucose contribute to disease development. The aim of this study was to clarify the influence of age on the pathogenesis of diabetes and to analyse a candidate gene for Type II diabetes in this strain.¶Methods. Several phenotypic characteristics related to diabetes mellitus were monitored longitudinally in male NSY and control C3H/He mice. The nucleotide sequence of Glut4, a candidate gene for Nidd1nsy (a susceptibility gene for Type II diabetes) on Chromosome 11, encoding insulin-sensitive glucose transporter, was determined in NSY and C3H mice.¶Results. Glucose intolerance worsened with age, and fasting blood glucose and fasting plasma insulin concentration increased with age in NSY mice. Pancreatic insulin content increased until 24 weeks of age but then decreased at 48 weeks of age in NSY mice. The hypoglycaemic response to insulin was statistically significantly smaller in NSY than in C3H/He mice. The nucleotide sequence of GLUT4 cDNA was identical in NSY and C3H/He mice, but both were different from the sequence reported previously.¶Conclusion/interpretation. Insulin secretion and insulin resistance, as well as ageing possibly play an important part in the disease development in NSY mice. A decline of pancreatic insulin content in older age might cause the relative insulin deficiency in this strain. Nucleotide sequencing suggests that Glut4 is unlikely to be a candidate gene for Nidd1nsy. [Diabetologia (2000) 43: 932–938]


Current Aging Science | 2011

Role of Insulin Signaling in the Interaction Between Alzheimer Disease and Diabetes Mellitus: A Missing Link to Therapeutic Potential

Naoyuki Sato; Shuko Takeda; Kozue Uchio-Yamada; Hironori Ueda; Tomomi Fujisawa; Hiromi Rakugi; Ryuichi Morishita

Diabetes mellitus (DM) is one of the major non-genetic risk factors for Alzheimer disease (AD). However, the mechanism by which DM increases the risk of AD has not been elucidated. Here, we summarize recent findings to address this question. Whereas neuropathological studies in humans suggest that DM does not increase Aβ accumulation in the brain (a major hallmark of AD), earlier works in animal models show that Aβ does accumulate. Therefore, alternate mechanisms might exist. Recent studies using the human brain indicate that insulin signaling is impaired in the AD brain. In neurons, this insulin signaling plays a key role in modulating synaptic function and neuronal senescence besides regulating tau phosphorylation, another hallmark of AD. On the other hand, in cerebrovessels, DM causes vascular remodeling, which involves increased RAGE (receptor for advanced glycation endproducts) expression, and AD is associated with cerebrovascular amyloid angiopathy (CAA). Our recent study involving AD mice with DM has revealed that a vicious circle underlies the interaction between AD and DM. Interestingly, in our mouse model, AD increased RAGE expression, and DM worsened CAA. The contribution of vascular factors such as RAGE expression and CAA to the impairment of insulin signaling will be discussed. This impaired insulin signaling might be a possible link between AD and DM. Moreover, insulin signaling is also involved in the mechanism of aging, decreasing with an increase in age. An identification of the mechanism whereby DM modifies the pathological condition of AD through the modulation of insulin signaling is required to develop potential therapeutics for AD not only with but also without DM.

Collaboration


Dive into the Tomomi Fujisawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge