Tomomi Ichimiya
Soka University of America
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomomi Ichimiya.
Journal of Biological Chemistry | 2004
Tomomi Ichimiya; Hiroshi Manya; Yoshiko Ohmae; Hideki Yoshida; Kuniaki Takahashi; Ryu Ueda; Tamao Endo; Shoko Nishihara
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi) knock-down to investigate the function of these proteins in vivo. Drosophila POMT2 (dPOMT2) RNAi mutant flies showed a “twisted abdomen phenotype,” in which the abdomen is twisted 30–60°, similar to the dPOMT1 mutant. Moreover, dPOMT2 interacted genetically with dPOMT1, suggesting that the dPOMTs function in collaboration with each other in vivo. We expressed dPOMTs in Sf21 cells and measured POMT activity. dPOMT2 transferred a mannose to the dystroglycan protein only when it was coexpressed with dPOMT1. Likewise, dPOMT1 showed POMT activity only when coexpressed with dPOMT2, and neither dPOMT showed any activity by itself. Each dPOMT RNAi fly totally reduced POMT activity, despite the specific reduction in the level of each dPOMT mRNA. The expression pattern of dPOMT2 mRNA was found to be similar to that of dPOMT1 mRNA using whole mount in situ hybridization. These results demonstrate that the two dPOMTs function as a protein O-mannosyltransferase in association with each other, in vitro and in vivo, to generate and maintain normal muscle development.
Molecular Brain Research | 2000
Yoko Tohyama; Tomomi Ichimiya; Hiromi Kasama-Yoshida; Masami Hasegawa; Hisako Kojima; Yoichi Tamai; Tadashi Kurihara
The cDNA of lungfish Protopterus annectens myelin DM20 was cloned, and the complete amino acid sequence of Protopterusannectens DM20 was deduced. When five possible phylogenetic trees were tested for the DM20 sequences, the maximum likelihood method supported tree 1 [((tetrapods, lungfish), coelacanth), zebrafish, shark] or tree 5 [(tetrapods, lungfish), (coelacanth, zebrafish), shark]. Both tree 1 and tree 5 indicate that lungfish is phylogenetically the closest to tetrapods among the living fishes.
PLOS ONE | 2009
Norihiko Sasaki; Takuya Hirano; Tomomi Ichimiya; Masahiro Wakao; Kazumi Hirano; Akiko Kinoshita-Toyoda; Hidenao Toyoda; Yasuo Suda; Shoko Nishihara
Recently, we have identified two 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent Km value of 1.54 µM or 1.49 µM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.
PLOS ONE | 2010
Morio Ueyama; Yoshihiro Akimoto; Tomomi Ichimiya; Ryu Ueda; Hayato Kawakami; Toshiro Aigaki; Shoko Nishihara
Walker-Warburg syndrome, a progressive muscular dystrophy, is a severe disease with various kinds of symptoms such as muscle weakness and occasional seizures. The genes of protein O-mannosyltransferases 1 and 2 (POMT1 and POMT2), fukutin, and fukutin-related protein are responsible for this syndrome. In our previous study, we cloned Drosophila orthologs of human POMT1 and POMT2 and identified their activity. However, the mechanism of onset of this syndrome is not well understood. Furthermore, little is known about the behavioral properties of the Drosophila POMT1 and POMT2 mutants, which are called rotated abdomen (rt) and twisted (tw), respectively. First, we performed various kinds of behavioral tests and described in detail the muscle structures by using these mutants. The mutant flies exhibited abnormalities in heavy exercises such as climbing or flight but not in light movements such as locomotion. Defective motor function in mutants appeared immediately after eclosion and was exaggerated with aging. Along with motor function, muscle ultrastructure in the tw mutant was altered, as seen in human patients. We demonstrated that expression of RNA interference (RNAi) for the rt gene and the tw mutant was almost completely lethal and semi-lethal, respectively. Flies expressing RNAi had reduced lifespans. These findings clearly demonstrate that Drosophila POMT mutants are models for human muscular dystrophy. We then observed a high density of myoblasts with an enhanced degree of apoptosis in the tw mutant, which completely lost enzymatic activity. In this paper, we propose a novel mechanism for the development of muscular dystrophy: POMT mutation causes high myoblast density and position derangement, which result in apoptosis, muscle disorganization, and muscle cell defects.
PLOS ONE | 2012
Kazumi Hirano; Norihiko Sasaki; Tomomi Ichimiya; Taichi Miura; Toin H. van Kuppevelt; Shoko Nishihara
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.
Glycobiology | 2008
Hideki Yoshida; Takashi J. Fuwa; Mikiko Arima; Hiroshi Hamamoto; Norihiko Sasaki; Tomomi Ichimiya; Ken-ichi Osawa; Ryu Ueda; Shoko Nishihara
T antigen (Galbeta1-3GalNAcalpha1-Ser/Thr), the well-known tumor-associated antigen, is a core 1 mucin-type O-glycan structure that is synthesized by core 1 beta1,3-galactosyltransferase (C1beta3GalT), which transfers Gal from UDP-Gal to Tn antigen (GalNAcalpha1-Ser/Thr). Three putative C1beta3GalTs have been identified in Drosophila. However, although all three are expressed in embryos, their roles during embryogenesis have not yet been clarified. In this study, we used P-element inserted mutants to show that CG9520, one of the three putative C1beta3GalTs, synthesizes T antigen expressed on the central nervous system (CNS) during embryogenesis. We also found that T antigen was expressed on a subset of the embryonic hemocytes. CG9520 mutant embryos showed the loss of T antigens on the CNS and on a subset of hemocytes. Then, the loss of T antigens was rescued by precise excision of the P-element inserted into the CG9520 gene. Our data demonstrate that T antigens expressed on the CNS and on a subset of hemocytes are synthesized by CG9520 in the Drosophila embryo. In addition, we found that the number of circulating hemocytes was reduced in third instar larvae of CG9520 mutant. We, therefore, named the CG9520 gene Drosophila core 1 beta1,3-galactosyltransferase 1 because it is responsible for the synthesis and function of T antigen in vivo.
Journal of Biological Chemistry | 2010
Katsufumi Dejima; Daisuke Murata; Souhei Mizuguchi; Kazuko H. Nomura; Tomomi Izumikawa; Hiroshi Kitagawa; Keiko Gengyo-Ando; Sawako Yoshina; Tomomi Ichimiya; Shoko Nishihara; Shohei Mitani; Kazuya Nomura
Synthesis of extracellular sulfated molecules requires active 3′-phosphoadenosine 5′-phosphosulfate (PAPS). For sulfation to occur, PAPS must pass through the Golgi membrane, which is facilitated by Golgi-resident PAPS transporters. Caenorhabditis elegans PAPS transporters are encoded by two genes, pst-1 and pst-2. Using the yeast heterologous expression system, we characterized PST-1 and PST-2 as PAPS transporters. We created deletion mutants to study the importance of PAPS transporter activity. The pst-1 deletion mutant exhibited defects in cuticle formation, post-embryonic seam cell development, vulval morphogenesis, cell migration, and embryogenesis. The pst-2 mutant exhibited a wild-type phenotype. The defects observed in the pst-1 mutant could be rescued by transgenic expression of pst-1 and hPAPST1 but not pst-2 or hPAPST2. Moreover, the phenotype of a pst-1;pst-2 double mutant were similar to those of the pst-1 single mutant, except that larval cuticle formation was more severely defected. Disaccharide analysis revealed that heparan sulfate from these mutants was undersulfated. Gene expression reporter analysis revealed that these PAPS transporters exhibited different tissue distributions and subcellular localizations. These data suggest that pst-1 and pst-2 play different physiological roles in heparan sulfate modification and development.
Genes to Cells | 2015
Miki Yamamoto-Hino; Hideki Yoshida; Tomomi Ichimiya; Megumi Maeda; Yoshinobu Kimura; Norihiko Sasaki; Kiyoko F. Aoki-Kinoshita; Akiko Kinoshita-Toyoda; Hidenao Toyoda; Ryu Ueda; Shoko Nishihara; Satoshi Goto
Glycan structures are synthesized by a series of reactions conducted by glycosylation‐related (GR) proteins such as glycosyltransferases, glycan‐modifying enzymes, and nucleotide‐sugar transporters. For example, the common core region of glycosaminoglycans (GAGs) is sequentially synthesized by peptide‐O‐xylosyltransferase, β1,4‐galactosyltransferase I, β1,3‐galactosyltransferase II, and β1,3‐glucuronyltransferase. This raises the possibility that functional impairment of GR proteins involved in synthesis of the same glycan might result in the same phenotypic abnormality. To examine this possibility, comprehensive silencing of genes encoding GR and proteoglycan core proteins was conducted in Drosophila. Drosophila GR candidate genes (125) were classified into five functional groups for synthesis of GAGs, N‐linked, O‐linked, Notch‐related, and unknown glycans. Spatiotemporally regulated silencing caused a range of malformed phenotypes that fell into three types: extra veins, thick veins, and depigmentation. The clustered phenotypes reflected the biosynthetic pathways of GAGs, Fringe‐dependent glycan on Notch, and glycans placed at or near nonreducing ends (herein termed terminal domains of glycans). Based on the phenotypic clustering, CG33145 was predicted to be involved in formation of terminal domains. Our further analysis showed that CG33145 exhibited galactosyltransferase activity in synthesis of terminal N‐linked glycans. Phenotypic clustering, therefore, has potential for the functional prediction of novel GR genes.
Virology | 2012
Yohei Seki; Misaho Mizukura; Tomomi Ichimiya; Yasuo Suda; Shoko Nishihara; Michiaki Masuda; Sayaka Takase-Yoden
There is increasing evidence that soluble glycosaminoglycans such as heparin can interfere with the infectivity of various viruses, including ecotropic murine leukemia viruses (MLVs). The ecotropic MLV, Friend MLV (F-MLV) and the neuropathogenic variants A8 MLV and PVC-211 MLV, were susceptible to heparin-mediated inhibition of infection of NIH 3T3 cells. To investigate the interaction between the envelope glycoprotein (Env) of MLV and heparin, we prepared vesicular stomatitis virus-based pseudotyped viruses carrying the Env of F-, A8, or PVC-211 MLVs. Surface plasmon resonance analyses indicated that the Env of A8 and PVC-211 MLVs had a higher binding activity to heparin than that of F-MLV. We examined the influence of N- or O-sulfation of heparin on binding activity to Env and on the inhibition of the infectivity of MLV and pseudotyped viruses carrying Env. This analysis indicated that the O-sulfate groups of heparin play a major role in determining Env-dependent inhibitory effects.
FEBS Letters | 2013
Fumiaki Nakayama; Sachiko Umeda; Tomomi Ichimiya; Shin Kamiyama; Masaharu Hazawa; Takeshi Yasuda; Shoko Nishihara; Takashi Imai
This study focuses on clarifying the contribution of sulfation to radiation‐induced apoptosis in human Burkitts lymphoma cell lines, using 3′‐phosphoadenosine 5′‐phosphosulfate transporters (PAPSTs). Overexpression of PAPST1 or PAPST2 reduced radiation‐induced apoptosis in Namalwa cells, whereas the repression of PAPST1 expression enhanced apoptosis. Inhibition of PAPST slightly decreased keratan sulfate (KS) expression, so that depletion of KS significantly increased radiation‐induced apoptosis. In addition, the repression of all three N‐acetylglucosamine‐6‐O‐sulfotransferases (CHST2, CHST6, and CHST7) increased apoptosis. In contrast, PAPST1 expression promoted the phosphorylation of p38 MAPK and Akt in irradiated Namalwa cells. These findings suggest that 6‐O‐sulfation of GlcNAc residues in KS reduces radiation‐induced apoptosis of human Burkitts lymphoma cells.