Tomomi Sumida
Kyushu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomomi Sumida.
Journal of Virology | 2014
Yoshitaka Iba; Yoshifumi Fujii; Nobuko Ohshima; Tomomi Sumida; Ritsuko Kubota-Koketsu; Mariko Ikeda; Motoaki Wakiyama; Mikako Shirouzu; Jun Okada; Yoshinobu Okuno; Yoshikazu Kurosawa; Shigeyuki Yokoyama
ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since mutations are readily introduced into such epitopes, this type of antibody shows narrow strain specificity. Recently, however, broadly neutralizing antibodies have been isolated. Most of these bind either to conserved sites in the stem region or to the sialic acid-binding pocket itself. In the present study, we identified a new neutralizing epitope in the head region recognized by a broadly neutralizing human antibody against H3N2. This epitope may be useful for design of vaccines.
Journal of Molecular Biology | 2009
Tomomi Sumida; Ryohei Ishii; Tatsuo Yanagisawa; Shigeyuki Yokoyama; Makoto Ito
We report the molecular cloning and characterization of two novel beta-N-acetylhexosaminidases (beta-HEX, EC 3.2.1.52) from Paenibacillus sp. strain TS12. The two beta-HEXs (Hex1 and Hex2) were 70% identical in primary structure, and the N-terminal region of both enzymes showed significant similarity with beta-HEXs belonging to glycoside hydrolase family 20 (GH20). Interestingly, however, the C-terminal region of Hex1 and Hex2 shared no sequence similarity with the GH20 beta-HEXs or other known proteins. Both recombinant enzymes, expressed in Escherichia coli BL21(DE3), hydrolyzed the beta-N-acetylhexosamine linkage of chitooligosaccharides and glycosphingolipids such as asialo GM2 and Gb4Cer in the absence of detergent. However, the enzyme was not able to hydrolyze GM2 ganglioside in the presence or in the absence of detergent. We determined three crystal structures of Hex1; the Hex1 deletion mutant Hex1-DeltaC at a resolution of 1.8 A; Hex1-DeltaC in complex with beta-N-acetylglucosamine at 1.6 A; and Hex1-DeltaC in complex with beta-N-acetylgalactosamine at 1.9 A. We made a docking model of Hex1-DeltaC with GM2 oligosaccharide, revealing that the sialic acid residue of GM2 could hinder access of the substrate to the active site cavity. This is the first report describing the molecular cloning, characterization and X-ray structure of a procaryotic beta-HEX capable of hydrolyzing glycosphingolipids.
Organic and Biomolecular Chemistry | 2012
Tomomi Sumida; Keith A. Stubbs; Makoto Ito; Shigeyuki Yokoyama
One useful methodology that has been used to give insight into how chemically synthesized inhibitors bind to enzymes and the reasons underlying their potency is crystallographic studies of inhibitor-enzyme complexes. Presented here is the X-ray structural analysis of a representative family 20 exo-β-N-acetylhexosaminidase in complex with various known classes of inhibitor of these types of enzymes, which highlights how different inhibitor classes can inhibit the same enzyme. This study will aid in the future development of inhibitors of not only exo-β-N-acetylhexosaminidases but also other types of glycoside hydrolases.
Journal of Biological Chemistry | 2011
Tomomi Sumida; Ken Fujimoto; Makoto Ito
We report here the molecular cloning, characterization, and catalytic mechanism of a novel glycosphingolipid-degrading β-N-acetylgalactosaminidase (β-NGA) from Paenibacillus sp. TS12 (NgaP). Consisting of 1034 putative amino acid residues, NgaP shares no sequence similarity with known proteins. Recombinant NgaP, expressed in Escherichia coli, cleaved the nonreducing terminal β-GalNAc residues of gangliotriaosylceramide and globotetraosylceramide. The enzyme hydrolyzed para-nitrophenyl-β-N-acetylgalactosaminide ∼100 times faster than para-nitrophenyl-β-N-acetylglucosaminide. GalNAc thiazoline, an analog of the oxazolinium intermediate and potent inhibitor for enzymes adopting substrate-assisted catalysis, competitively inhibited the enzyme. The Ki of the enzyme for GalNAc thiazoline was 1.3 nm, whereas that for GlcNAc thiazoline was 46.8 μm. Comparison of the secondary structure with those of known enzymes exhibiting substrate-assisted catalysis and point mutation analysis indicated that NgaP adopts substrate-assisted catalysis in which Glu-608 and Asp-607 could function as a proton donor and a stabilizer of the 2-acetamide group of the β-GalNAc at the active site, respectively. These results clearly indicate that NgaP is a β-NGA showing substrate-assisted catalysis. This is the first report describing the molecular cloning of a β-NGA adopting substrate-assisted catalysis.
Acta Crystallographica Section D-biological Crystallography | 2013
Tatsuo Yanagisawa; Tomomi Sumida; Ryohei Ishii; Shigeyuki Yokoyama
Structures of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) have been determined in a novel crystal form. The triclinic form crystals contained two PylRS dimers (four monomer molecules) in the asymmetric unit, in which the two subunits in one dimer each bind N(ℇ)-(tert-butyloxycarbonyl)-L-lysyladenylate (BocLys-AMP) and the two subunits in the other dimer each bind AMP. The BocLys-AMP molecules adopt a curved conformation and the C(α) position of BocLys-AMP protrudes from the active site. The β7-β8 hairpin structures in the four PylRS molecules represent distinct conformations of different states of the aminoacyl-tRNA synthesis reaction. Tyr384, at the tip of the β7-β8 hairpin, moves from the edge to the inside of the active-site pocket and adopts multiple conformations in each state. Furthermore, a new crystal structure of the BocLys-AMPPNP-bound form is also reported. The bound BocLys adopts an unusually bent conformation, which differs from the previously reported structure. It is suggested that the present BocLys-AMPPNP-bound, BocLys-AMP-bound and AMP-bound complexes represent the initial binding of an amino acid (or pre-aminoacyl-AMP synthesis), pre-aminoacyl-tRNA synthesis and post-aminoacyl-tRNA synthesis states, respectively. The conformational changes of Asn346 that accompany the aminoacyl-tRNA synthesis reaction have been captured by X-ray crystallographic analyses. The orientation of the Asn346 side chain, which hydrogen-bonds to the carbonyl group of the amino-acid substrate, shifts by a maximum of 85-90° around the C(β) atom.
Applied and Environmental Microbiology | 2002
Tomomi Sumida; Noriyuki Sueyoshi; Makoto Ito
ABSTRACT Gangliosides, sialic acid-containing glycosphingolipids, are membrane constituents of vertebrates and are known to have important roles in cellular differentiation, adhesion, and recognition. We report here the isolation of a bacterium capable of degrading gangliotetraose-series gangliosides and a new method for the production of glucosylceramide with this bacterium. GM1a ganglioside was found to be sequentially degraded by Paenibacillus sp. strain TS12, which was isolated from soil, as follows: GM1a → asialo GM1 → asialo GM2 → lactosylceramide → glucosylceramide. TS12 was found to produce a series of ganglioside-degrading enzymes, such as sialidases, β-galactosidases, and β-hexosaminidases. TS12 also produced β-glucosidases, but glucosylceramide was somewhat resistant to the bacterial enzyme under the conditions used. Taking advantage of the specificity, we developed a new method for the production of glucosylceramide using TS12 as a biocatalyst. The method involves the conversion of crude bovine brain gangliosides to glucosylceramide by coculture with TS12 and purification of the product by chromatography with Wakogel C-300 HG.
Clinica Chimica Acta | 2015
Arun Babu Kumar; Zdenek Spacil; Farideh Ghomashchi; Sophia Masi; Tomomi Sumida; Makoto Ito; František Tureček; C. Ronald Scott; Michael H. Gelb
BACKGROUND Treatments have been developed for mucopolysaccharidoses IVA (MPS IVA) and MPS VI suggesting the need for eventual newborn screening. Biochemical enzyme assays are important for diagnosis. Previously reported fluorimetric assays of the relevant enzymes are based on substrates with poor activity or specificity. METHODS We developed new fluorimetric assays for N-acetylgalactosamine-6-sulfatase (GALNS) and arylsulfatase B (ARSB) based on the natural substrates, N-acetylgalactosamine-6-sulfate (and 4-sulfate), which have improved activity and specificity toward the relevant enzymes. The new substrates were tested on dried blood spots on newborn screening cards, and assays showed acceptable linearity in response with the amount of enzyme present (using quality control samples). RESULTS When tested on dried blood spots from random newborns and affected patients, the assays showed good discrimination between the 2 sample groups. CONCLUSIONS The analytical range of the new fluorimetric assays, defined as the ratio of enzyme-dependent-to-enzyme-independent assay response, is likely to be insufficient to use these assays for newborn screening. Rather, these new fluorimetric assays should be useful in a diagnostic lab to confirm a diagnosis via biochemical enzyme testing.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Tomomi Sumida; Tatsuo Yanagisawa; Ryohei Ishii; Shigeyuki Yokoyama
GenX, a lysyl-tRNA synthetase paralogue from Escherichia coli, was overexpressed in E. coli, purified by three chromatographic steps and cocrystallized with a lysyl adenylate analogue (LysAMS) by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The GenX-LysAMS crystals belonged to the triclinic space group P1, with unit-cell parameters a=54.80, b=69.15, c=94.08 A, alpha=95.47, beta=106.51, gamma=90.46 degrees, and diffracted to 1.9 A resolution. Furthermore, GenX was cocrystallized with translation elongation factor P (EF-P), which is believed to be a putative substrate of GenX, and LysAMS using PEG 4000 and ammonium sulfate as precipitants. The GenX-EF-P-LysAMS crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a=105.93, b=102.96, c=119.94 A, beta=99.4 degrees, and diffracted to 2.5 A resolution. Structure determination of the E. coli GenX-LysAMS and GenX-EF-P-LysAMS complexes by molecular replacement was successful and structure refinements are now in progress.
Nature Structural & Molecular Biology | 2010
Tatsuo Yanagisawa; Tomomi Sumida; Ryohei Ishii; Chie Takemoto; Shigeyuki Yokoyama
Journal of Biochemistry | 2002
Tomomi Sumida; Noriyuki Sueyoshi; Makoto Ito
Collaboration
Dive into the Tomomi Sumida's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs