Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomomi Yamashita is active.

Publication


Featured researches published by Tomomi Yamashita.


Cardiovascular Research | 2011

IL-6-mediated Th17 differentiation through RORγt is essential for the initiation of experimental autoimmune myocarditis

Tomomi Yamashita; Tomohiko Iwakura; Kazuki Matsui; Haruyo Kawaguchi; Masanori Obana; Akiko Hayama; Makiko Maeda; Yasukatsu Izumi; Issei Komuro; Yoshiyuki Ohsugi; Minoru Fujimoto; Tetsuji Naka; Tadamitsu Kishimoto; Hiroyuki Nakayama; Yasushi Fujio

AIMS Interleukin (IL)-17-producing helper T (Th17) cells have been proposed to participate in the pathogenesis of chronic inflammation, such as autoimmune myocarditis. IL-6 gene ablation confers the resistance to experimental autoimmune myocarditis (EAM). In this study, we have addressed the pathological roles of IL-6 in the regulation of Th17 cells in EAM. METHODS AND RESULTS To induce EAM, mice were immunized twice with α-myosin heavy chain peptide. Three weeks after the first injection, the cardiac expression of the Th17-specific transcription factor, retinoic acid receptor-related orphan nuclear receptor (ROR γt), was up-regulated. Consistently, Th17 cells were recruited into EAM hearts, as analysed by flow cytometry. Using the mice with enhanced green fluorescence protein (eGFP) gene knocked-in at RORγt locus (RORγt-eGFP mice), we observed Th17 cell infiltration into inflamed lesions. Pre-treatment with IL-6 receptor (IL-6R)-blocking antibody (anti-IL-6R Ab) inhibited EAM induction in terms of disease severity score (3.5 ± 0.8; IgG vs. 0.5 ± 0.8; anti-IL-6R Ab, n = 6, P< 0.01) and suppressed the myocardial expression of IL-17 and RORγt. In contrast, the administration of anti-IL-6R Ab 7 days after the first immunization failed to show the inhibitory effects, suggesting that IL-6 plays important roles in EAM initiation. Finally, by generating RORγt-eGFP homozygous mice, we revealed that RORγt gene ablation conferred the resistance to EAM induction. CONCLUSION IL-6-mediated induction of Th17 cells is critical for the onset of EAM, but not for its progression. IL-6/Th17 signalling could be a promising therapeutic target for the prevention of myocardial inflammation.


Journal of Molecular and Cellular Cardiology | 2011

STAT3/Pim-1 signaling pathway plays a crucial role in endothelial differentiation of cardiac resident Sca-1+ cells both in vitro and in vivo

Tomohiko Iwakura; Tomomi Mohri; Tatsuto Hamatani; Masanori Obana; Tomomi Yamashita; Makiko Maeda; Naoto Katakami; Hideaki Kaneto; Toru Oka; Issei Komuro; Junichi Azuma; Hiroyuki Nakayama; Yasushi Fujio

Cardiac stem cells potentially differentiate into cardiac cells, including cardiomyocytes and endothelial cells (ECs). Previously we demonstrated that STAT3 activation by IL-6 family cytokines, such as leukemia inhibitory factor (LIF), induces the endothelial differentiation of cardiac Sca-1+ cells. In this study, we addressed molecular mechanisms for EC differentiation of Sca-1+ cells. First, DNA array experiments were performed to search for the molecules induced by LIF. Among 134 genes that LIF upregulated by more than 4 fold, we focused on Pim-1 gene transcript, because Pim-1 is associated with the differentiation of some cell lineages. Real time RT-PCR analyses confirmed that LIF stimulation upregulated Pim-1 expression. Adenoviral transfection of dominant negative (dn) STAT3 inhibited LIF-mediated induction of Pim-1, while the overexpression of constitutively active STAT3 upregulated Pim-1 expression, suggesting that STAT3 activation is necessary and sufficient for Pim-1 induction. Moreover, in STAT3-deficient Sca-1+ cells, LIF failed to induce Pim-1 expression and EC differentiation. Importantly, the overexpression of dnPim-1 abrogated the induction of EC markers, indicating Pim kinase activity is indispensable for STAT3-mediated EC differentiation in vitro. Finally, Sca-1+ cells labeled with LacZ were transplanted into post-infarct myocardium and the transdifferentiation was estimated. The overexpression of wild-type STAT3 by adenovirus vector significantly promoted EC differentiation, while STAT3 gene ablation reduced the frequency of differentiating cells in post-infarct myocardium. Furthermore, transplanted Sca-1+ cells overexpressing dnPim-1 showed the reduced frequency of EC differentiation and capillary density. Collectively, Pim-1 kinase is upregulated by STAT3 activation in cardiac Sca-1+ cells and plays a pivotal role in EC differentiation both in vitro and in vivo.


Cell Death and Disease | 2013

ifn-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury.

Hiroshi Ishii; Shogo Tanabe; Masaki Ueno; Tateki Kubo; H Kayama; Satoshi Serada; Minoru Fujimoto; Kiyoshi Takeda; Tetsuji Naka; Tomomi Yamashita

Transfer of type-1 helper T-conditioned (Th1-conditioned) cells promotes functional recovery with enhanced axonal remodeling after spinal cord injury (SCI). This study explored the molecular mechanisms underlying the beneficial effects of pro-inflammatory Th1-conditioned cells after SCI. The effect of Th1-conditioned cells from interferon-γ (ifn-γ) knockout mice (ifn-γ−/− Th1 cells) on the recovery after SCI was reduced. Transfer of Th1-conditioned cells led to the activation of microglia (MG) and macrophages (MΦs), with interleukin 10 (IL-10) upregulation. This upregulation of IL-10 was reduced when ifn-γ−/− Th1 cells were transferred. Intrathecal neutralization of IL-10 in the spinal cord attenuated the effects of Th1-conditioned cells. Further, IL-10 is robustly secreted from Th1-conditioned cells in an ifn-γ-dependent manner. Th1-conditioned cells from interleukin 10 knockout (il-10−/−) mice had no effects on recovery from SCI. These findings demonstrate that ifn-γ-dependent secretion of IL-10 from Th1 cells, as well as native MG/MΦs, is required for the promotion of motor recovery after SCI.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart.

Masanori Obana; Kaori Miyamoto; Shiho Murasawa; Tomohiko Iwakura; Akiko Hayama; Tomomi Yamashita; Momoko Shiragaki; Shohei Kumagai; Akimitsu Miyawaki; Kana Takewaki; Goro Matsumiya; Makiko Maeda; Minoru Yoshiyama; Hiroyuki Nakayama; Yasushi Fujio

Activation of cardiac STAT3 by IL-6 cytokine family contributes to cardioprotection. Previously, we demonstrated that IL-11, an IL-6 cytokine family, has the therapeutic potential to prevent adverse cardiac remodeling after myocardial infarction; however, it remains to be elucidated whether IL-11 exhibits postconditioning effects. To address the possibility that IL-11 treatment improves clinical outcome of recanalization therapy against acute myocardial infarction, we examined its postconditioning effects on ischemia/reperfusion (I/R) injury. C57BL/6 mice were exposed to ischemia (30 min) and reperfusion (24 h), and IL-11 was intravenously administered at the start of reperfusion. I/R injury mediated the activation of STAT3, which was enhanced by IL-11 administration. IL-11 treatment reduced I/R injury, analyzed by triphenyl tetrazolium chloride staining [PBS, 46.7 ± 14.4%; IL-11 (20 μg/kg), 28.6 ± 7.5% in the ratio of infarct to risk area]. Moreover, echocardiographic and hemodynamic analyses clarified that IL-11 treatment preserved cardiac function after I/R. Terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining revealed that IL-11 reduced the frequency of apoptotic cardiomyocytes after I/R. Interestingly, IL-11 reduced superoxide production assessed by in situ dihydroethidium fluorescence analysis, accompanied by the increased expression of metallothionein 1 and 2, reactive oxygen species (ROS) scavengers. Importantly, with the use of cardiac-specific STAT3 conditional knockout (STAT3 CKO) mice, it was revealed that cardiac-specific ablation of STAT3 abrogated IL-11-mediated attenuation of I/R injury. Finally, IL-11 failed to suppress the ROS production after I/R in STAT3 CKO mice. IL-11 administration exhibits the postconditioning effects through cardiac STAT3 activation, suggesting that IL-11 has the clinical therapeutic potential to prevent I/R injury in heart.


Biochemical and Biophysical Research Communications | 2013

Cathelicidin antimicrobial peptide inhibits fibroblast migration via P2X7 receptor signaling.

Shohei Kumagai; Kazuki Matsui; Haruyo Kawaguchi; Tomomi Yamashita; Tomomi Mohri; Yasushi Fujio; Hiroyuki Nakayama

Fibrosis is one of the most common pathological alterations in heart failure, and fibroblast migration is an essential process in the development of cardiac fibrosis. Experimental autoimmune myocarditis (EAM) is a model of inflammatory heart disease characterized by inflammatory cell infiltration followed by healing without residual fibrosis. However, the precise mechanisms mediating termination of inflammation and nonfibrotic healing remain to be elucidated. Microarray analysis of hearts from model mice at multiple time points after EAM induction identified several secreted proteins upregulated during nonfibrotic healing, including the anti-inflammatory cathelicidin antimicrobial peptide (CAMP). Treatment with LL-37, a human homolog of CAMP, activated MAP kinases in fibroblasts but not in cardiomyocytes, indicating that fibroblasts were the target of CAMP activity. In addition, LL-37 decreased fibroblast migration in the in vitro scratch assay. P2X7 receptor (P2X7R), a well-known receptor for LL-37, was involved in LL-37 mediated biological effect on cardiac fibroblasts. Stimulation of BzATP, a P2X7R agonist, activated MAPK in fibroblasts, whereas the P2X7R antagonist, BBG, as well as P2X7R deletion abolished both LL-37-mediated MAPK activation and LL-37-induced reduction in fibroblast migration. These results strongly suggest that CAMP upregulation during myocarditis prevents myocardial fibrosis by restricting fibroblast migration via activation of the P2X7R-MAPK signaling pathway.


Scientific Reports | 2017

Adult murine cardiomyocytes exhibit regenerative activity with cell cycle reentry through STAT3 in the healing process of myocarditis

Akimitsu Miyawaki; Masanori Obana; Yusuke Mitsuhara; Aya Orimoto; Yusuke Nakayasu; Tomomi Yamashita; So-ichiro Fukada; Makiko Maeda; Hiroyuki Nakayama; Yasushi Fujio

Mammalian cardiomyocytes substantially lose proliferative capacity immediately after birth, limiting adult heart regeneration after injury. However, clinical myocarditis appears to be self-limiting with tissue-reparative properties. Here, we investigated the molecular mechanisms underlying the recovery from myocarditis with regard to cardiomyocyte proliferation using an experimental autoimmune myocarditis (EAM) model. Three weeks after EAM induction (EAM3w), cardiac tissue displayed infiltration of inflammatory cells with cardiomyocyte apoptosis. However, by EAM5w, the myocardial damage was remarkably attenuated, associated with an increase in cardiomyocytes that were positively stained with cell cycle markers at EAM3w. Cardiomyocyte fate mapping study revealed that the proliferating cardiomyocytes primarily derived from pre-existing cardiomyocytes. Signal transducer and activator of transcription 3 (STAT3) was robustly activated in cardiomyocytes during inflammation, accompanied by induction of interleukin-6 family cytokines. Cardiomyocyte-specific ablation of STAT3 gene suppressed the frequency of cycling cardiomyocytes in the recovery period without influencing inflammatory status, resulting in impaired tissue repair and cardiac dysfunction. Finally, microarray analysis revealed that the expression of regeneration-related genes, metallothioneins and clusterin, in cardiomyocytes was decreased by STAT3 gene deletion. These data show that adult mammalian cardiomyocytes restore regenerative capacity with cell cycle reentry through STAT3 as the heart recovers from myocarditis-induced cardiac damage.


Journal of Pharmacological Sciences | 2011

Glycoprotein 130 Cytokine Signal as a Therapeutic Target Against Cardiovascular Diseases

Yasushi Fujio; Makiko Maeda; Tomomi Mohri; Masanori Obana; Tomohiko Iwakura; Akiko Hayama; Tomomi Yamashita; Hiroyuki Nakayama; Junichi Azuma


Circulation | 2016

Abstract 13219: Adult Mammalian Hearts Restore Intrinsic Regenerative Capacity Through Signal Transducer and Activation of Transcription 3 in the Resolution Phase of Myocarditis

Akimitsu Miyawaki; Masanori Obana; Yusuke Mitsuhara; Aya Orimoto; Yusuke Nakayasu; Tomomi Yamashita; So-ichiro Fukada; Makiko Maeda; Yasushi Sakata; Hiroyuki Nakayama; Yasushi Fujio


Circulation Research | 2012

Abstract 241: Cardiac-Specific Overexpression of Runx2 Mediates Cardiac Hypertrophy and Dysfunction in Mice

Hiroyuki Nakayama; Tatsuto Hamatani; Shohei Kumagai; Kota Tonegawa; Tomomi Yamashita; Yasushi Fujio


Circulation Research | 2011

Abstract P145: Cathelicidin Antimicrobial Peptide Is Upregulated After Myocarditis and Inhibits Fibroblast Migration via P2x7 Receptor Signaling

Hiroyuki Nakayama; Kazuki Matsui; Tomomi Yamashita; Haruyo Kawaguchi; Yasushi Fujio

Collaboration


Dive into the Tomomi Yamashita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge