Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomonao Matsushita is active.

Publication


Featured researches published by Tomonao Matsushita.


Nature | 2003

Dimers of the N-terminal domain of phytochrome B are functional in the nucleus

Tomonao Matsushita; Nobuyoshi Mochizuki; Akira Nagatani

A plant modulates its developmental processes in response to light by several informational photoreceptors such as phytochrome. Phytochrome is a dimeric chromoprotein which regulates various aspects of plant development from seed germination to flowering. Upon absorption of red light, phytochrome translocates from the cytoplasm to the nucleus, and regulates gene expression through interaction with transcription factors such as PIF3 (refs 5–7). The phytochrome polypeptide has two domains: the amino-terminal photosensory domain with a chromophore and the carboxy-terminal domain which contains signalling motifs such as a kinase domain. The latter is widely believed to transduce the signal to downstream components. Here we show that the C-terminal domain of Arabidopsis phytochrome B (phyB), which is known as the most important member of the phytochrome family, is not directly involved in signal transduction. The N-terminal domain isolated from phyB, when dimerized and localized in the nucleus, triggered full phyB responses with much higher photosensitivity than the full-length phyB. These findings indicate that the C-terminal domain attenuates the activity of phyB rather than positively transducing the signal.


The Plant Cell | 2004

Functional Analysis of a 450–Amino Acid N-Terminal Fragment of Phytochrome B in Arabidopsis

Yoshito Oka; Tomonao Matsushita; Nobuyoshi Mochizuki; Tomomi Suzuki; Satoru Tokutomi; Akira Nagatani

Phytochrome, a major photoreceptor in plants, consists of two domains: the N-terminal photosensory domain and the C-terminal domain. Recently, the 651–amino acid photosensory domain of phytochrome B (phyB) has been shown to act as a functional photoreceptor in the nucleus. The phytochrome (PHY) domain, which is located at the C-terminal end of the photosensory domain, is required for the spectral integrity of phytochrome; however, little is known about the signal transduction activity of this domain. Here, we have established transgenic Arabidopsis thaliana lines expressing an N-terminal 450–amino acid fragment of phyB (N450) lacking the PHY domain on a phyB-deficient background. Analysis of these plants revealed that N450 can act as an active photoreceptor when attached to a short nuclear localization signal and β-glucuronidase. In vitro spectral analysis of reconstituted chromopeptides further indicated that the stability of the N450 Pfr form, an active form of phytochrome, is markedly reduced in comparison with the Pfr form of full-length phyB. Consistent with this, plants expressing N450 failed to respond to intermittent light applied at long intervals, indicating that N450 Pfr is short-lived in vivo. Taken together, our findings show that the PHY domain is dispensable for phyB signal transduction but is required for stabilizing the Pfr form of phyB.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Phytochrome controls alternative splicing to mediate light responses in Arabidopsis

Hiromasa Shikata; Kousuke Hanada; Tomokazu Ushijima; Moeko Nakashima; Yutaka Suzuki; Tomonao Matsushita

Significance Plants adapt to their fluctuating environment by monitoring surrounding light conditions through several photoreceptors, such as phytochrome. It is widely believed that upon absorbing red light, phytochrome induces plant light responses by regulating the transcription of numerous target genes. In this study, we provide clear evidence that phytochrome controls not only transcription, but also alternative splicing in Arabidopsis. We reveal that 6.9% of the annotated genes in the Arabidopsis genome undergo rapid changes in their alternative splicing patterns in a red light- and phytochrome-dependent manner. Our results demonstrate that phytochrome simultaneously regulates two different aspects of gene expression, namely transcription and alternative splicing to mediate light responses in plants. Plants monitor the ambient light conditions using several informational photoreceptors, including red/far-red light absorbing phytochrome. Phytochrome is widely believed to regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. Here we provide evidence that phytochrome significantly changes alternative splicing (AS) profiles at the genomic level in Arabidopsis, to approximately the same degree as it affects steady-state transcript levels. mRNA sequencing analysis revealed that 1,505 and 1,678 genes underwent changes in their AS and steady-state transcript level profiles, respectively, within 1 h of red light exposure in a phytochrome-dependent manner. Furthermore, we show that splicing factor genes were the main early targets of AS control by phytochrome, whereas transcription factor genes were the primary direct targets of phytochrome-mediated transcriptional regulation. We experimentally validated phytochrome-induced changes in the AS of genes that are involved in RNA splicing, phytochrome signaling, the circadian clock, and photosynthesis. Moreover, we show that phytochrome-induced AS changes of SPA1-RELATED 3, the negative regulator of light signaling, physiologically contributed to promoting photomorphogenesis. Finally, photophysiological experiments demonstrated that phytochrome transduces the signal from its photosensory domain to induce light-dependent AS alterations in the nucleus. Taking these data together, we show that phytochrome directly induces AS cascades in parallel with transcriptional cascades to mediate light responses in Arabidopsis.


PLOS Genetics | 2008

Mutant Screen Distinguishes between Residues Necessary for Light-Signal Perception and Signal Transfer by Phytochrome B

Yoshito Oka; Tomonao Matsushita; Nobuyoshi Mochizuki; Peter H. Quail; Akira Nagatani

The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651–amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, β-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.


Plant Physiology | 2011

Functional analyses of the activation loop of phototropin2 in Arabidopsis

Shin-ichiro Inoue; Tomonao Matsushita; Yuta Tomokiyo; Masaki Matsumoto; Keiichi I. Nakayama; Toshinori Kinoshita; Ken-ichiro Shimazaki

Phototropins (phot1 and phot2) are autophosphorylating blue-light receptor kinases that mediate blue-light responses such as phototropism, chloroplast accumulation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Only phot2 induces the chloroplast avoidance response under strong blue light. The serine (Ser) residues of the kinase activation loop in phot1 are autophosphorylated by blue light, and autophosphorylation is essential for the phot1-mediated responses. However, the role of autophosphorylation in phot2 remains to be determined. In this study, we substituted the conserved residues of Ser-761 and Ser-763 with alanine (S761A S763A) in the phot2 activation loop and analyzed their function by investigating the phot2-mediated responses after the transformation of phot1 phot2 double mutant with this mutant phot2 gene. Transgenic plants expressing the mutant phot2 protein exhibited impaired responses in chloroplast movement, stomatal opening, phototropic bending, leaf flattening, and plant growth; and those expressing phot2 with S761D S763D mutations showed the normal responses. Substitution of both Ser-761 and Ser-763 with alanine in phot2 did not significantly affect the kinase activity in planta. From these results, we conclude that phosphorylation of Ser-761 and Ser-763 in the activation loop may be a common primary step for phot2-mediated responses.


Plant Physiology | 2013

TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis

Eigo Ando; Masato Ohnishi; Yin Wang; Tomonao Matsushita; Aiko Watanabe; Yuki Hayashi; Miho Fujii; Jian Feng Ma; Shin-ichiro Inoue; Toshinori Kinoshita

Stomatal opening is indirectly modulated by a mechanism similar to that of the photoperiodic floral transition. FLOWERING LOCUS T (FT) is the major regulatory component controlling photoperiodic floral transition. It is expressed in guard cells and affects blue light-induced stomatal opening induced by the blue-light receptor phototropins phot1 and phot2. Roles for other flowering regulators in stomatal opening have yet to be determined. We show in Arabidopsis (Arabidopsis thaliana) that TWIN SISTER OF FT (TSF), CONSTANS (CO), and GIGANTEA (GI) provide a positive effect on stomatal opening. TSF, which is the closest homolog of FT, was transcribed in guard cells, and light-induced stomatal opening was repressed in tsf-1, a T-DNA insertion mutant of TSF. Overexpression of TSF in a phot1 phot2 mutant background gave a constitutive open-stomata phenotype. Then, we examined whether CO and GI, which are upstream regulators of FT and TSF in photoperiodic flowering, are involved in stomatal opening. Similar to TSF, light-induced stomatal opening was suppressed in the GI and CO mutants gi-1 and co-1. A constitutive open-stomata phenotype was observed in GI and CO overexpressors with accompanying changes in the transcription of both FT and TSF. In photoperiodic flowering, photoperiod is sensed by photoreceptors such as the cryptochromes cry1 and cry2. We examined stomatal phenotypes in a cry1 cry2 mutant and in CRY2 overexpressors. Light-induced stomatal opening was suppressed in cry1 cry2, and the transcription of FT and TSF was down-regulated. In contrast, the stomata in CRY2 overexpressors opened even in the dark, and FT and TSF transcription was up-regulated. We conclude that the photoperiodic flowering components TSF, GI, and CO positively affect stomatal opening.


The Plant Cell | 2015

Axillary Meristem Formation in Rice Requires the WUSCHEL Ortholog TILLERS ABSENT1

Wakana Tanaka; Yoshihiro Ohmori; Tomokazu Ushijima; Hiroaki Matsusaka; Tomonao Matsushita; Toshihiro Kumamaru; Shigeyuki Kawano; Hiro-Yuki Hirano

A WOX gene, TAB1/WUS, plays a critical role in the initiation of the axillary meristem development in rice. Axillary shoot formation is a key determinant of plant architecture. Formation of the axillary shoot is regulated by initiation of the axillary meristem or outgrowth of the axillary bud. Here, we show that rice (Oryza sativa) TILLERS ABSENT1 (TAB1; also known as Os WUS), an ortholog of Arabidopsis thaliana WUS, is required to initiate axillary meristem development. We found that formation of the axillary meristem in rice proceeds via a transient state, which we term the premeristem, characterized by the expression of OSH1, a marker of indeterminate cells in the shoot apical meristem. In the tab1-1 (wus-1) mutant, however, formation of the axillary meristem is arrested at various stages of the premeristem zone, and OSH1 expression is highly reduced. TAB1/WUS is expressed in the premeristem zone, where it shows a partially overlapping pattern with OSH1. It is likely, therefore, that TAB1 plays an important role in maintaining the premeristem zone and in promoting the formation of the axillary meristem by promoting OSH1 expression. Temporal expression patterns of WUSCHEL-RELATED HOMEOBOX4 (WOX4) indicate that WOX4 is likely to regulate meristem maintenance instead of TAB1 after establishment of the axillary meristem. Lastly, we show that the prophyll, the first leaf in the secondary axis, is formed from the premeristem zone and not from the axillary meristem.


Plant Journal | 2012

The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction

Hiromasa Shikata; Mami Shibata; Tomokazu Ushijima; Moeko Nakashima; Sam Geun Kong; Ken Matsuoka; Chentao Lin; Tomonao Matsushita

Plants monitor the light environment through informational photoreceptors that include phytochromes. In seedling de-etiolation, phytochrome B (phyB), which is the most important member of the phytochrome family, interacts with transcription factors to regulate gene expression and transduce light signals. In this study, we identified rrc1 (reduced red-light responses in cry1cry2 background 1), an Arabidopsis mutant that is impaired in phyB-mediated light responses. A genetic analysis demonstrated that RRC1 affected light signaling in a phyB-dependent manner. RRC1 encodes an ortholog of the human potential splicing factor SR140. The RRC1 polypeptide contains a C-terminal arginine/serine-rich (RS) domain that is important for the regulation of alternative splicing. Although the complete loss of RRC1 caused pleiotropic developmental abnormalities, the deletion of the RS domain specifically reduced phyB signaling and caused aberrant alternative splicing of several SR protein genes. Moreover, semi-quantitative RT-PCR analysis revealed that the alternative splicing patterns of some of the SR protein genes were altered in a red-light-dependent manner, and that these responses were reduced in both phyB and rrc1 mutants. These findings suggest that the regulation of alternative splicing by the RS domain of RRC1 plays an important role in phyB signal transduction.


Plant and Cell Physiology | 2015

UV-B-Induced CPD Photolyase Gene Expression is Regulated by UVR8-Dependent and -Independent Pathways in Arabidopsis

Nan Li; Mika Teranishi; Hiroko Yamaguchi; Tomonao Matsushita; Masaaki K. Watahiki; Tomohiko Tsuge; Shao Shan Li; Jun Hidema

Plants have evolved various mechanisms that protect against the harmful effects of UV-B radiation (280-315 nm) on growth and development. Cyclobutane pyrimidine dimer (CPD) photolyase, the repair enzyme for UV-B-induced CPDs, is essential for protecting cells from UV-B radiation. Expression of the CPD photolyase gene (PHR) is controlled by light with various wavelengths including UV-B, but the mechanisms of this regulation remain poorly understood. In this study, we investigated the regulation of PHR expression by light with various wavelengths, in particular low-fluence UV-B radiation (280 nm, 0.2 µmol m(-2) s(-1)), in Arabidopsis thaliana seedlings grown under light-dark cycles for 7 d and then adapted to the dark for 3 d. Low-fluence UV-B radiation induced CPDs but not reactive oxygen species. AtPHR expression was effectively induced by UV-B, UV-A (375 nm) and blue light. Expression induced by UV-A and blue light was predominantly regulated by the cryptochrome-dependent pathway, whereas phytochromes A and B played a minor but noticeable role. Expression induced by UV-B was predominantly regulated by the UVR8-dependent pathway. AtPHR expression was also mediated by a UVR8-independent pathway, which is correlated with CPD accumulation induced by UV-B radiation. These results indicate that Arabidopsis has evolved diverse mechanisms to regulate CPD photolyase expression by multiple photoreceptor signaling pathways, including UVR8-dependent and -independent pathways, as protection against harmful effects of UV-B radiation.


Cell | 2017

Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection

Tomokazu Ushijima; Kousuke Hanada; Eiji Gotoh; Wataru Yamori; Yutaka Kodama; Hiroyuki Tanaka; Miyako Kusano; Atsushi Fukushima; Mutsutomo Tokizawa; Yoshiharu Yamamoto; Yasuomi Tada; Yutaka Suzuki; Tomonao Matsushita

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.

Collaboration


Dive into the Tomonao Matsushita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kousuke Hanada

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Masamitsu Wada

Tokyo Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge