Tomonori Fukasawa
Hiroshima University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomonori Fukasawa.
Colloids and Surfaces B: Biointerfaces | 2012
Hiroyuki Shinto; Yuki Aso; Tomonori Fukasawa; Ko Higashitani
It is of fundamental importance to understand the mechanism of adhesion between a mammalian cell and a material surface. In the present study, we have used atomic force microscopy (AFM) to measure the interaction forces between the murine melanoma cells and the single polystyrene microspheres of different surface chemistries in serum-free culture media: the unmodified hydrophobic polystyrene (bare/PS) and the carboxyl-modified polystyrene (COOH/PS). The cell-microsphere interaction forces have been also measured in the culture media containing the free Arg-Gly-Asp (RGD) peptides as an integrin inhibitor. In the absence of free RGD peptides, the adhesion force for COOH/PS was larger than that for bare/PS. The adhesion force for COOH/PS decreased with increasing the concentration of free RGD peptides added in the culture media and then became almost constant at the RGD concentrations larger than 0.5 mg/mL, whereas that for bare/PS remained very small regardless of the RGD concentration. In addition, the effects of the microsphere diameter and the contact time on the adhesion forces were investigated. On the basis of the AFM results, possible mechanism of cell-microsphere adhesion will be discussed.
Applied Radiation and Isotopes | 2014
Hideki Ichikawa; Takeshi Uneme; Tooru Andoh; Yuya Arita; Takuya Fujimoto; Minoru Suzuki; Yoshinori Sakurai; Hiroyuki Shinto; Tomonori Fukasawa; Fumihiko Fujii; Yoshinobu Fukumori
As a nanoparticulate device for controlled delivery of Gd in NCT, the authors have developed gadolinium-loaded chitosan nanoparticles (Gd-nanoCPs). In the present study, influence of micrometric properties such as particle size, particle-surface charge and Gd content of Gd-nanoCPs on tumor-killing effect by Gd-NCT was investigated with Gd-nanoCPs. Two types of Gd-nanoCPs with different mean particle size, zeta potential and Gd-content (Gd-nanoCP-400; 391nm, 28mV, 9wt% and Gd-nanoCP-200; 214nm, 19mV, 24wt%) could be prepared by using chitosans with different molecular weights. Gd-nanoCPs incorporating 1.2mg of natural Gd were injected intratumorally once or twice to mice subcutaneously-bearing B16F10 melanoma. Eight hours after the last administration, thermal neutron was irradiated to tumor region of the mice. Remarkable tumor-growth was observed in both hot and cold control groups. In contrast, Gd-NCT groups showed significant tumor-growth suppression effect, though their efficacy was found to depend on the micrometric properties of Gd-nanoCPs. In particular, the Gd-nanoCP-200 exhibited stronger tumor-killing effect than the Gd-nanoCP-400 at the same Gd dose and it was still similar to Gd-nanoCP-400 in tumor-growth suppressing effect even at the half of Gd dose of Gd-nanoCP-400. This significance in tumor-killing effect would be ascribed from a higher Gd retention in the tumor tissue and an improved distribution of Gd with intratumorally administered Gd-nanoCP-200. Indeed, the Gd concentration in tumor tissue at the time corresponding to the onset of thermal neutron irradiation was determined to be significantly higher in Gd-nanoCP-200, compared with Gd-nanoCP-400. These results demonstrated that appropriate modification of Gd-nanoCPs in micrometric properties would be an effective way to improve the retention of Gd in the tumor tissue after intratumoral injection, leading to the enhanced tumor-killing effect in Gd-NCT.
Colloids and Surfaces B: Biointerfaces | 2013
Hiroyuki Shinto; Takuya Hirata; Tomonori Fukasawa; Syuji Fujii; Hayata Maeda; Masahiro Okada; Yoshinobu Nakamura; Tsutomu Furuzono
We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed.
Journal of Colloid and Interface Science | 2011
Yasuyuki Kusaka; Tomonori Fukasawa; Yasuhisa Adachi
The collision radius of a floc is an indispensable parameter for the precise description of the rate of aggregation during the development of particle flocs with a wide size distribution. Herein, we report on the characteristics of the collision radius of fractal aggregates formed by off-lattice diffusion-limited cluster-cluster aggregation (DLCCA) simulations, and discuss aggregation kinetics based on the value of the estimated collision radius. The collision radius has a fractal relationship with the number of primary particles that compose the floc. Further, the obtained fractal dimensions of flocs increase from the normally accepted value of 1.6-1.8 to a value of ~2.5 when the initial volume fraction is above 8%. From an assessment of the partial radial distribution function of the particles, the increase of the fractal dimensions determined by the collision radius can be attributed to a change in the spatial distribution of neighboring particles. The DLCCA simulation also reveals an apparent increase in the rate of aggregation upon an increase in the initial volume fraction. For a relatively low initial volume fraction, the enhancement of the aggregation rate is expressed by a population balance equation taking into account additional factors, i.e., transient collision flux among particles/flocs, excluded volumes, and polydispersed features of flocs. However, for cases with high initial volume fractions, the population balance model that accounts for these three factors overestimates the aggregation rate, which supports the concept of a caging effect.
Journal of Colloid and Interface Science | 2010
Tomonori Fukasawa; Yasuhisa Adachi
Microscopic monitoring of floc structure, floc size distribution and the rate of coagulation was carried out for Brownian coagulation of PSL particles. Experiments were designed for the condition of salt concentration that is slightly below critical coagulation concentration (CCC). The density of the solvent was controlled by using deuterium oxide (D(2)O) to avoid sedimentation. Results are summarized as follows: (i) Near CCC, floc restructuring from the beginning stage of coagulation was evidenced, i.e., the ratio of linear triplet is found to be remarkably reduced as compared with the result obtained for the case of rapid coagulation which was implemented under sufficiently high salt concentration. (ii) The increase of fractal dimension from 1.8 in the case of rapid coagulation to 2.2 was confirmed by the analysis of mass balance using size distribution of flocs. This increment resulted in the decrease of effective excluded volume of flocs. (iii) The rate of coagulation was constant until later stage. This result contrasts to the result of rapid coagulation [T. Fukasawa, Y. Adachi, J. Colloid Interface Sci. 304 (2006) 115].
Review of Scientific Instruments | 2003
Y. Nakashima; S. Kobayashi; H. Aminaka; Tomonori Fukasawa; M. Shoji; Y. Ishimoto; Y. Kubota; M. Yoshikawa; Eiichiro Kawamori; M. Ichimura; M. K. Islam; K. Yatsu
Results of Hα measurement in the GAMMA 10 tandem mirror are described, with a particular focus on the behavior of neutrals in the anchor minimum-B region. Recently a set of Hα line-emission detector arrays was designed and installed in the anchor-cell, where the shape of the magnetic flux tube becomes flat and the cross section of plasma is elongated elliptically. The detector consists of Hα interference filter, optical fiber, and photomultiplier with magnetic shield, and is absolutely calibrated by using a standard lamp. In standard ion-cyclotron-range-of-frequency heated, hot-ion-mode plasmas, detailed measurements of Hα line-emission form the central-cell to the anchor-cell were carried out, and the dependence of the Hα intensity on the quantity of gas puffing was investigated. The characteristic behavior of neutrals in the nonaxisymmetric anchor-cell is also discussed, based on the result of neutral transport simulation.
Review of Scientific Instruments | 2017
Achmad Dwitama Karisma; Taishu Hamaba; Tomonori Fukasawa; An-Ni Huang; Tomoomi Segawa; Kunihiro Fukui
The temperature distribution, microwave absorption efficiency, and dielectric properties of a copper (ii) oxide (CuO) pellet heated by microwave irradiation were investigated for use in developing a single-mode-type microwave heating thermogravimetry apparatus. The validity of the apparatus was confirmed by comparing the measured data with the results of numerical simulations. The dielectric properties and error margins of other parameters estimated using the apparatus were also examined. The temperature distribution of the CuO pellet was observed to decrease monotonously on moving from the outlet to the inlet side of the apparatus. A three-dimensional numerical simulation of the electromagnetic field accurately reproduced this temperature distribution, suggesting the one-way movement of microwaves in the single-mode-type microwave apparatus. The numerically determined dependency of the CuO absorption efficiency was also found to be in very good agreement with published data. The same was the case with the permittivity loss of the CuO at various temperatures, as estimated from the measured microwave absorption efficiency. However, a larger error was observed in the estimation of the permittivity loss of a material with a lower microwave absorption efficiency, which was apparently due to the measurement error of the absorption efficiency of such a material.
Langmuir | 2017
Ko Higashitani; Kouta Nakamura; Takuya Shimamura; Tomonori Fukasawa; Katsumi Tsuchiya; Yasushige Mori
The modification of the classical Smoluchowski theory for the rapid coagulation rate of colloidal particles, which takes account of the effect of the squeezing flow between colliding particles, has been widely accepted because it predicts experimental results adequately. However, it is not clear whether the modified theory, in which the coagulation rate is independent of the particle size, is applicable even to nanoparticles in solutions. In the present study, the rapid coagulation rates of silica particles in various 2 M chloride and 1 M potassium solutions were measured by using a low-angle light-scattering apparatus, and the dependence of rapid coagulation rate on the particle diameter, Dp, was investigated extensively. It was clearly shown that the rapid coagulation rate of spherical silica particles reduces by the orders of magnitude with decreasing particle size at Dp ≤ 300 nm, whereas it coincides with the value predicted by the modified theory at Dp ≥ 300 nm. A possible mechanism is proposed, and an analytical equation, which predicts the dramatic reduction in the rapid coagulation rate with decreasing particle size, is derived.
Langmuir | 2018
Ko Higashitani; Kouta Nakamura; Tomonori Fukasawa; Katsumi Tsuchiya; Yasushige Mori
The Smoluchowski theory has been widely accepted as the basic theory to estimate the rapid coagulation rate of colloidal particles in electrolyte solutions. However, because the size and specificity of molecules and ions are not taken into account, the theory is applicable only if the particle size is large enough to neglect the effects caused by the structured layers composed of water molecules, ions, and hydrated ions adsorbed on the colloidal surface. In the present study, the rapid coagulation rates of silica nanoparticles in concentrated chloride and potassium solutions were measured by using a low-angle light-scattering apparatus, and the dependence of the experimental value of rapid coagulation rate, KER, on the particle diameter, Dp, and also on the Gibbs free energy of hydration of ions, ΔGhyd, was investigated extensively. The following were found. (1) When the particle size was small enough, the value of KER reduced exponentially not only with the decreasing particle size but also with the increasing value of (-ΔGhyd) of cations (counterions) in the case of chloride solutions and with that of anions (coions) in the case of potassium solutions. (2) Silica nanoparticles of Dp ≲ 70 nm in 1 M KNO3 and KSCN solutions did not coagulate at all, although they coagulated at Dp ≳ 100 nm as in the other potassium solutions. These unexpected phenomena were explained by the proposed mechanisms.
Journal of Colloid and Interface Science | 2006
Tomonori Fukasawa; Yasuhisa Adachi