Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomonori Shinya is active.

Publication


Featured researches published by Tomonori Shinya.


Proceedings of the National Academy of Sciences of the United States of America | 2007

CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis

Ayako Miya; Premkumar Albert; Tomonori Shinya; Yoshitake Desaki; Kazuya Ichimura; Ken Shirasu; Yoshihiro Narusaka; Naoto Kawakami; Hanae Kaku; Naoto Shibuya

Chitin is a major component of fungal cell walls and serves as a microbe-associated molecular pattern (MAMP) for the detection of various potential pathogens in innate immune systems of both plants and animals. We recently showed that chitin elicitor-binding protein (CEBiP), plasma membrane glycoprotein with LysM motifs, functions as a cell surface receptor for chitin elicitor in rice. The predicted structure of CEBiP does not contain any intracellular domains, suggesting that an additional component(s) is required for signaling through the plasma membrane into the cytoplasm. Here, we identified a receptor-like kinase, designated CERK1, which is essential for chitin elicitor signaling in Arabidopsis. The KO mutants for CERK1 completely lost the ability to respond to the chitin elicitor, including MAPK activation, reactive oxygen species generation, and gene expression. Disease resistance of the KO mutant against an incompatible fungus, Alternaria brassicicola, was partly impaired. Complementation with the WT CERK1 gene showed cerk1 mutations were responsible for the mutant phenotypes. CERK1 is a plasma membrane protein containing three LysM motifs in the extracellular domain and an intracellular Ser/Thr kinase domain with autophosphorylation/myelin basic protein kinase activity, suggesting that CERK1 plays a critical role in fungal MAMP perception in plants.


Science | 2010

Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants

Ronnie de Jonge; H. Peter van Esse; Anja Kombrink; Tomonori Shinya; Yoshitake Desaki; Ralph Bours; Sander van der Krol; Naoto Shibuya; Matthieu H. A. J. Joosten; Bart P. H. J. Thomma

Fungal Defenses One of the major driving forces of evolution is the constant arms race between plants and animals and the microbial pathogens that infect them. The fungus Cladosporium fulvum causes leaf mold on tomato plants. One of the ways tomato plants sense infections by C. fulvum is by detecting chitin, a component of fungal cell walls. In response, the fungus has evolved strategies to evade detection. De Jonge et al. (p. 953) have now identified one such mechanism in C. fulvum, mediated by the effector protein Ecp6. Secreted Ecp6 is able to bind to chitin oligosaccharides that are released upon degradation of the fungal cell wall and sequester them so that they are not detected by tomato chitin receptors. Proteins with domain structure similar to Ecp6 are conserved throughout the fungal kingdom, which suggests that chitin sequestration may represent a general mechanism used by fungi to evade immune detection. A fungal protein binds to a host cell wall component to allow the fungus to escape immune responses. Multicellular organisms activate immunity upon recognition of pathogen-associated molecular patterns (PAMPs). Chitin is the major component of fungal cell walls, and chitin oligosaccharides act as PAMPs in plant and mammalian cells. Microbial pathogens deliver effector proteins to suppress PAMP-triggered host immunity and to establish infection. Here, we show that the LysM domain–containing effector protein Ecp6 of the fungal plant pathogen Cladosporium fulvum mediates virulence through perturbation of chitin-triggered host immunity. During infection, Ecp6 sequesters chitin oligosaccharides that are released from the cell walls of invading hyphae to prevent elicitation of host immunity. This may represent a common strategy of host immune suppression by fungal pathogens, because LysM effectors are widely conserved in the fungal kingdom.


The Plant Cell | 2012

Effector-Mediated Suppression of Chitin-Triggered Immunity by Magnaporthe oryzae Is Necessary for Rice Blast Disease

Thomas A. Mentlak; Anja Kombrink; Tomonori Shinya; Lauren S. Ryder; Ippei Otomo; Hiromasa Saitoh; Ryohei Terauchi; Yoko Nishizawa; Naoto Shibuya; Bart P. H. J. Thomma; Nicholas J. Talbot

This work shows that the rice blast fungus secretes a protein that can suppress plant defenses by affecting the way in which chitin, a component of fungal cell walls, is perceived by the rice plant. Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.


Glycobiology | 2010

Glyco-conjugates as elicitors or suppressors of plant innate immunity

Alba Silipo; Gitte Erbs; Tomonori Shinya; J. Maxwell Dow; Michelangelo Parrilli; Rosa Lanzetta; Naoto Shibuya; Mari-Anne Newman; Antonio Molinaro

Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components beta-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant innate immune system though the action of pattern recognition receptors (PRRs). A greater insight into the mechanisms of MAMP recognition and the description of PRRs for different microbial glyco-conjugates will have considerable impact on the improvement of plant health and disease resistance. Here we review the current knowledge about the bacterial MAMPs LPS and PGN, the fungal MAMPs beta-glucan, chitin and chitosan oligosaccharides and the bacterial suppressors EPS and cyclic glucan, with particular reference to the chemical structures of these molecules, the PRRs involved in their recognition (where these have been defined), and possible mechanisms underlying suppression.


Plant and Cell Physiology | 2012

Functional Characterization of CEBiP and CERK1 Homologs in Arabidopsis and Rice Reveals the Presence of Different Chitin Receptor Systems in Plants

Tomonori Shinya; Noriko Motoyama; Asahi Ikeda; Miyuki Wada; Kota Kamiya; Masahiro Hayafune; Hanae Kaku; Naoto Shibuya

Chitin is a representative microbe-associated molecular pattern (MAMP) molecule for various fungi and induces immune responses in many plant species. It has been clarified that the chitin signaling in rice requires a receptor kinase OsCERK1 and a receptor-like protein (Os)CEBiP, which specifically binds chitin oligosaccharides. On the other hand, Arabidopsis requires a receptor kinase (At)CERK1 for chitin signaling but it is not clear whether the plant also requires a CEBiP-like molecule for chitin perception/signaling. To clarify the similarity/difference of the chitin receptor in these two model plants, we first characterized CEBiP homologs in Arabidopsis. Only one of three CEBiP homologs, AtCEBiP (LYM2), showed a high-affinity binding for chitin oligosaccharides similar to rice CEBiP. AtCEBiP also represented the major chitin-binding protein in the Arabidopsis membrane. However, the single/triple knockout (KO) mutants of Arabidopsis CEBiP homologs and the overexpressor of AtCEBiP showed chitin-induced defense responses similar to wild-type Arabidopsis, indicating that AtCEBiP is biochemically functional as a chitin-binding protein but does not contribute to signaling. Studies of the chitin binding properties of the ectodomains of At/OsCERK1 and the chimeric receptors consisting of ecto/cytosolic domains of these molecules indicated that AtCERK1 is sufficient for chitin perception by itself.


Plant Physiology | 2009

Suppression of a Phospholipase D Gene, OsPLDβ1, Activates Defense Responses and Increases Disease Resistance in Rice

Takeshi Yamaguchi; Masaharu Kuroda; Hiromoto Yamakawa; Taketo Ashizawa; Kazuyuki Hirayae; Leona Kurimoto; Tomonori Shinya; Naoto Shibuya

Phospholipase D (PLD) plays an important role in plants, including responses to abiotic as well as biotic stresses. A survey of the rice (Oryza sativa) genome database indicated the presence of 17 PLD genes in the genome, among which OsPLDα1, OsPLDα5, and OsPLDβ1 were highly expressed in most tissues studied. To examine the physiological function of PLD in rice, we made knockdown plants for each PLD isoform by introducing gene-specific RNA interference constructs. One of them, OsPLDβ1-knockdown plants, showed the accumulation of reactive oxygen species in the absence of pathogen infection. Reverse transcription-polymerase chain reaction and DNA microarray analyses revealed that the knockdown of OsPLDβ1 resulted in the up-/down-regulation of more than 1,400 genes, including the induction of defense-related genes such as pathogenesis-related protein genes and WRKY/ERF family transcription factor genes. Hypersensitive response-like cell death and phytoalexin production were also observed at a later phase of growth in the OsPLDβ1-knockdown plants. These results indicated that the OsPLDβ1-knockdown plants spontaneously activated the defense responses in the absence of pathogen infection. Furthermore, the OsPLDβ1-knockdown plants exhibited increased resistance to the infection of major pathogens of rice, Pyricularia grisea and Xanthomonas oryzae pv oryzae. These results suggested that OsPLDβ1 functions as a negative regulator of defense responses and disease resistance in rice.


Current Opinion in Plant Biology | 2015

Chitin-mediated plant–fungal interactions: catching, hiding and handshaking

Tomonori Shinya; Tomomi Nakagawa; Hanae Kaku; Naoto Shibuya

Plants can detect infecting fungi through the perception of chitin oligosaccharides by lysin motif receptors such as CEBiP and CERK1. A major function of CERK1 seems to be as a signaling molecule in the receptor complex formed with ligand-binding molecules and to activate downstream defense signaling. Fungal pathogens, however, have developed counter strategies to escape from the chitin-mediated detection by using effectors and/or changing their cell walls. Common structural features between chitin and Nod-/Myc-factors and corresponding receptors have suggested the close relationships between the chitin-mediated immunity and rhizobial/arbuscular mycorrhizal symbiosis. The recent discovery of the dual function of OsCERK1 in both plant immunity and mycorrhizal symbiosis sheds new light on the evolutionary relationships between defense and symbiotic systems in plants.


Applied and Environmental Microbiology | 2007

The dasABC Gene Cluster, Adjacent to dasR, Encodes a Novel ABC Transporter for the Uptake of N,N′-Diacetylchitobiose in Streptomyces coelicolor A3(2)

Akihiro Saito; Tomonori Shinya; Katsushiro Miyamoto; Tomofumi Yokoyama; Hanae Kaku; Eiichi Minami; Naoto Shibuya; Hiroshi Tsujibo; Yoshiho Nagata; Akikazu Ando; Takeshi Fujii; Kiyotaka Miyashita

ABSTRACT N,N′-Diacetylchitobiose [(GlcNAc)2] induces the transcription of chitinase (chi) genes in Streptomyces coelicolor A3(2). Physiological studies showed that (GlcNAc)2 addition triggered chi expression and increased the rate of (GlcNAc)2 concentration decline in culture supernatants of mycelia already cultivated with (GlcNAc)2, suggesting that (GlcNAc)2 induced the synthesis of its own uptake system. Four open reading frames (SCO0531, SCO0914, SCO2946, and SCO5232) encoding putative sugar-binding proteins of ABC transporters were found in the genome by probing the 12-bp repeat sequence required for regulation of chi transcription. SCO5232, named dasA, showed transcriptional induction by (GlcNAc)2 and N,N′,N‴-triacetylchitotriose [(GlcNAc)3]. Surface plasmon resonance analysis showed that recombinant DasA protein exhibited the highest affinity for (GlcNAc)2 (equilibrium dissociation constant [KD] = 3.22 × 10−8). In the dasA-null mutant, the rate of decline of the (GlcNAc)2 concentration in the culture supernatant was about 25% of that in strain M145. The in vitro and in vivo data clearly demonstrated that dasA is involved in (GlcNAc)2 uptake. Upstream and downstream of dasA, the transcriptional regulator gene (dasR) and two putative integral membrane protein genes (dasBC) are located in the opposite and same orientations, respectively. The expression of dasR and dasB, which seemed independent of dasA transcription, was also induced by (GlcNAc)2 and (GlcNAc)3.


Plant and Cell Physiology | 2010

Characterization of Receptor Proteins using Affinity Cross-linking with Biotinylated Ligands

Tomonori Shinya; Tomohiko Osada; Yoshitake Desaki; Masahiro Hatamoto; Yuko Yamanaka; Hisashi Hirano; Ryota Takai; Fang-Sik Che; Hanae Kaku; Naoto Shibuya

The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.


Plant Physiology and Biochemistry | 2011

Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants

Judith Fliegmann; Sandra Uhlenbroich; Tomonori Shinya; Yves Martinez; Benoit Lefebvre; Naoto Shibuya; Jean Jacques Bono

The chitin elicitor-binding protein (CEBiP) from rice was the first plant lysin motif (LysM) protein for which the biological and biochemical function had been established. It belongs to a plant-specific family of extracellular LysM proteins (LYMs) for which we analyzed the phylogeny. LYMs are present in vascular plants only, where an early gene duplication event might have resulted in two types which were retained in present day genomes. LYMs consist of a signal peptide, three consecutive LysMs, separated by cysteine pairs, and a C-terminal region without any known signature, whose length allows the distinction between the two types, and which may be followed by a glycosylphosphatidylinositol (GPI) anchor motif. We analyzed a representative of each type, MtLYM1 and MtLYM2, from Medicago truncatula at the biochemical level and with respect to their expression patterns and observed some similarities but also marked differences. MtLYM1 and MtLYM2 proved to be very different with regard to abundance and apparent molecular mass on SDS-PAGE. Both undergo several post-translational modifications, including N-glycosylation and the addition of a GPI anchor, which would position the proteins at the outer face of the plasma membrane. Only MtLYM2, but not MtLYM1, showed specific binding to biotinylated N-acetylchitooctaose in a manner similar to CEBiP, which belongs to the same type. We postulate that LYM2-type proteins likely function in the perception of chitin-related molecules, whereas possible functions of LYM1-type proteins remain to be elucidated.

Collaboration


Dive into the Tomonori Shinya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Kombrink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Bart P. H. J. Thomma

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideaki Matsuoka

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge