Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoshige Akino is active.

Publication


Featured researches published by Tomoshige Akino.


American Journal of Pathology | 2009

Cytogenetic Abnormalities of Tumor-Associated Endothelial Cells in Human Malignant Tumors

Tomoshige Akino; Kyoko Hida; Yasuhiro Hida; Kunihiko Tsuchiya; Deborah Freedman; Chikara Muraki; Noritaka Ohga; Kouhei Matsuda; Kousuke Akiyama; Toru Harabayashi; Nobuo Shinohara; Katsuya Nonomura; Michael Klagsbrun; Masanobu Shindoh

Tumor blood vessels are thought to contain genetically normal and stable endothelial cells (ECs), unlike tumor cells, which typically display genetic instability. Yet, chromosomal aberration in human tumor-associated ECs (hTECs) in carcinoma has not yet been investigated. Here we isolated TECs from 20 human renal cell carcinomas and analyzed their cytogenetic abnormalities. The degree of aneuploidy was analyzed by fluorescence in situ hybridization using chromosome 7 and chromosome 8 DNA probes in isolated hTECs. In human renal cell carcinomas, 22-58% (median, 33%) of uncultured hTECs were aneuploid, whereas normal ECs were diploid. The mechanisms governing TEC aneuploidy were then studied using mouse TECs (mTECs) isolated from xenografts of human epithelial tumors. To investigate the contribution of progenitor cells to aneuploidy in mTECs, CD133(+) and CD133(-) mTECs were compared for aneuploidy. CD133(+) mTECs showed aneuploidy more frequently than CD133(-) mTECs. This is the first report showing cytogenetic abnormality of hTECs in carcinoma, contrary to traditional belief. Cytogenetic alterations in tumor vessels of carcinoma therefore can occur and may play a significant role in modifying tumor- stromal interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Epoxyeicosanoids promote organ and tissue regeneration

Dipak Panigrahy; Brian T. Kalish; Sui Huang; Diane R. Bielenberg; Hau D. Le; Jun Yang; Matthew L. Edin; Craig R. Lee; Ofra Benny; Dayna K. Mudge; Catherine Butterfield; Akiko Mammoto; Bora Inceoglu; Roger L. Jenkins; Mary Ann Simpson; Tomoshige Akino; Fred B. Lih; Kenneth B. Tomer; Donald E. Ingber; Bruce D. Hammock; John R. Falck; Vijaya L. Manthati; Arja Kaipainen; Patricia A. D'Amore; Mark Puder; Darryl C. Zeldin; Mark W. Kieran

Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.


American Journal of Pathology | 2012

Tumor Endothelial Cells Acquire Drug Resistance by MDR1 Up-Regulation via VEGF Signaling in Tumor Microenvironment

Kosuke Akiyama; Noritaka Ohga; Yasuhiro Hida; Taisuke Kawamoto; Yoshihiro Sadamoto; Shuhei Ishikawa; Nako Maishi; Tomoshige Akino; Miyako Kondoh; Aya Matsuda; Nobuo Inoue; Masanobu Shindoh; Kyoko Hida

Tumor endothelial cells (TECs) are therapeutic targets in anti-angiogenic therapy. Contrary to the traditional assumption, TECs can be genetically abnormal and might also acquire drug resistance. In this study, mouse TECs and normal ECs were isolated to investigate the drug resistance of TECs and the mechanism by which it is acquired. TECs were more resistant to paclitaxel with the up-regulation of multidrug resistance (MDR) 1 mRNA, which encodes the P-glycoprotein, compared with normal ECs. Normal human microvascular ECs were cultured in tumor-conditioned medium (CM) and became more resistant to paclitaxel through MDR1 mRNA up-regulation and nuclear translocation of Y-box-binding protein 1, which is an MDR1 transcription factor. Vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Akt were activated in human microvascular ECs by tumor CM. We observed that tumor CM contained a significantly high level of VEGF. A VEGFR kinase inhibitor, Ki8751, and a phosphatidylinositol 3-kinase-Akt inhibitor, LY294002, blocked tumor CM-induced MDR1 up-regulation. MDR1 up-regulation, via the VEGF-VEGFR pathway in the tumor microenvironment, is one of the mechanisms of drug resistance acquired by TECs. We observed that VEGF secreted from tumors up-regulated MDR1 through the activation of VEGFR2 and Akt. This process is a novel mechanism of the acquisition of drug resistance by TECs in the tumor microenvironment.


Biochemical and Biophysical Research Communications | 2010

Isolated tumor endothelial cells maintain specific character during long-term culture

Kohei Matsuda; Noritaka Ohga; Yasuhiro Hida; Chikara Muraki; Kunihiko Tsuchiya; Takuro Kurosu; Tomoshige Akino; Shou-Ching Shih; Yasunori Totsuka; Michael Klagsbrun; Masanobu Shindoh; Kyoko Hida

Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.


British Journal of Cancer | 2011

HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium

Takuro Kurosu; Noritaka Ohga; Yasuhiro Hida; Nako Maishi; Kousuke Akiyama; Wataru Kakuguchi; Takeshi Kuroshima; M Kondo; Tomoshige Akino; Yasunori Totsuka; Masanobu Shindoh; Fumihiro Higashino; Kyoko Hida

Background:Tumour stromal cells differ from its normal counterpart. We have shown that tumour endothelial cells (TECs) isolated from tumour tissues are also abnormal. Furthermore, we found that mRNAs of vascular endothelial growth factor-A (VEGF-A) and cyclooxygenase-2 (COX-2) were upregulated in TECs. Vascular endothelial growth factor-A and COX-2 are angiogenic factors and their mRNAs contain an AU-rich element (ARE). AU-rich element-containing mRNAs are reportedly stabilised by Hu antigen R (HuR), which is exported to the cytoplasm.Methods:Normal endothelial cell (NEC) and two types of TECs were isolated. We evaluated the correlation of HuR and accumulation of VEGF-A and COX-2 mRNAs in TECs and effects of HuR on biological phenotypes of TECs.Results:The HuR protein was accumulated in the cytoplasm of TECs, but not in NECs. Vascular endothelial growth factor-A and COX-2 mRNA levels decreased due to HuR knockdown and it was shown that these ARE-mRNA were bound to HuR in TECs. Furthermore, HuR knockdown inhibited cell survival, random motility, tube formation, and Akt phosphorylation in TECs.Conclusion:Hu antigen R is associated with the upregulation of VEGF-A and COX-2 mRNA in TECs, and has an important role in keeping an angiogenic switch on, through activating angiogenic phenotype in tumour endothelium.


Journal of Biological Chemistry | 2013

Netrin-1 Promotes Glioblastoma Cell Invasiveness and Angiogenesis by Multiple Pathways Including Activation of RhoA, Cathepsin B, and cAMP-response Element-binding Protein

Akio Shimizu; Hironao Nakayama; Priscilla Wang; Courtney König; Tomoshige Akino; Johanna Sandlund; Silvia Coma; Joseph E. Italiano; Akiko Mammoto; Diane R. Bielenberg; Michael Klagsbrun

Background: Netrins and their receptors play a role in cancer; however, the molecular mechanisms are not well understood. Results: Netrin-1 promotes glioblastoma cell invasion and angiogenesis, and these activities are abrogated by cathepsin B inhibitor. Conclusion: Netrin-1 plays a cathepsin B-dependent dual role in glioblastoma progression by promoting both invasiveness and angiogenesis. Significance: Novel netrin-1 mechanisms include activation of RhoA, cathepsin B, and cAMP-response element-binding protein. Glioblastomas are very difficult tumors to treat because they are highly invasive and disseminate within the normal brain, resulting in newly growing tumors. We have identified netrin-1 as a molecule that promotes glioblastoma invasiveness. As evidence, netrin-1 stimulates glioblastoma cell invasion directly through Matrigel-coated transwells, promotes tumor cell sprouting and enhances metastasis to lymph nodes in vivo. Furthermore, netrin-1 regulates angiogenesis as shown in specific angiogenesis assays such as enhanced capillary endothelial cells (EC) sprouting and by increased EC infiltration into Matrigel plugs in vivo, as does VEGF-A. This netrin-1 signaling pathway in glioblastoma cells includes activation of RhoA and cyclic AMP response element-binding protein (CREB). A novel finding is that netrin-1-induced glioblastoma invasiveness and angiogenesis are mediated by activated cathepsin B (CatB), a cysteine protease that translocates to the cell surface as an active enzyme and co-localizes with cell surface annexin A2 (ANXA2). The specific CatB inhibitor CA-074Me inhibits netrin-1-induced cell invasion, sprouting, and Matrigel plug angiogenesis. Silencing of CREB suppresses netrin-1-induced glioblastoma cell invasion, sprouting, and CatB expression. It is concluded that netrin-1 plays an important dual role in glioblastoma progression by promoting both glioblastoma cell invasiveness and angiogenesis in a RhoA-, CREB-, and CatB-dependent manner. Targeting netrin-1 pathways may be a promising strategy for brain cancer therapy.


BJUI | 2012

Peri-operative morbidity and mortality related to radical cystectomy: a multi-institutional retrospective study in Japan.

Norikata Takada; Takashige Abe; Nobuo Shinohara; Ataru Sazawa; Satoru Maruyama; Yuichiro Shinno; Soshu Sato; Kimiyoshi Mitsuhashi; Takuya Sato; Keiji Sugishita; Shinji Kamota; Takanori Yamashita; Junji Ishizaki; Takaya Hioka; Gaku Mouri; Takenori Ono; Naoto Miyajima; Takanori Sakuta; Tango Mochizuki; Toshiki Aoyagi; Hidenori Katano; Tomoshige Akino; Kazushi Hirakawa; Keita Minami; Akira Kumagai; Toshimori Seki; Masaki Togashi; Katsuya Nonomura

Study Type – Therapy (outcomes) Level of Evidence 2b Whats known on the subject? and What does the study add? Radical cystectomy remains associated with comparatively high perioperative morbidity and mortality, despite improvements in surgical techniques and perioperative care. At present, most studies on the complications associated with open radical cystectomy were derived from Western academic high‐volume centres, and data from Japan and other Asian countries were very limited. Using the modified Clavien grading system and 11 category grouping reported from MSKCC, we observed that 68% of patients experienced at least one complication within 90 days of surgery, and 17% of patients experienced major complications (90‐day mortality rate = 2%), which were compatible with reports from Western high‐volume centres. As far as we know, our report is the largest one regarding perioperative morbidity and mortality in Asian patients who underwent radical cystectomy.


Cancer Research | 2014

Netrin-1 Promotes Medulloblastoma Cell Invasiveness and Angiogenesis, and Demonstrates Elevated Expression in Tumor Tissue and Urine of Patients with Pediatric Medulloblastoma

Tomoshige Akino; Xuezhe Han; Hironao Nakayama; Brendan McNeish; David Zurakowski; Akiko Mammoto; Michael Klagsbrun; Edward R. Smith

Invasion and dissemination of medulloblastoma within the central nervous system is the principal factor predicting medulloblastoma treatment failure and death. Netrin-1 is an axon guidance factor implicated in tumor and vascular biology, including in invasive behaviors. We found that exogenous netrin-1 stimulated invasion of human medulloblastoma cells and endothelial cells in contrast to VEGF-A, which promoted invasion of endothelial cells but not medulloblastoma cells. Furthermore, medulloblastoma cells expressed endogenous netrin-1 along with its receptors, neogenin and UNC5B. Blockades in endogenous netrin-1, neogenin, or UNC5B reduced medulloblastoma invasiveness. Neogenin blockade inhibited netrin-1-induced endothelial cells tube formation and recruitment of endothelial cells into Matrigel plugs, two hallmarks of angiogenesis. In patients with pediatric medulloblastoma, netrin-1 mRNA levels were increased 1.7-fold in medulloblastoma tumor specimens compared with control specimens from the same patient. Immunohistochemical analyses showed that netrin-1 was elevated in medulloblastoma tumors versus cerebellum controls. Notably, urinary levels of netrin-1 were 9-fold higher in patients with medulloblastoma compared with control individuals. Moreover, urinary netrin-1 levels were higher in patients with invasive medulloblastoma compared with patients with noninvasive medulloblastoma. Finally, we noted that urinary netrin-1 levels diminished after medulloblastoma resection in patients. Our results suggest netrin-1 is a candidate biomarker capable of detecting an invasive, disseminated phenotype in patients with medulloblastoma and predicting their disease status.


Angiogenesis | 2013

GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2.

Silvia Coma; Marc Allard-Ratick; Tomoshige Akino; Laurens A. van Meeteren; Akiko Mammoto; Michael Klagsbrun

GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.


BJUI | 2010

Pathological characteristics and clinical course of bladder tumour developing after nephroureterectomy

Takashige Abe; Nobuo Shinohara; Toru Harabayashi; Ataru Sazawa; Tomoshige Akino; Shuhei Ishikawa; Kanako Kubota; Yoshihiro Matsuno; Takahiro Osawa; Takeshi Shibata; Yutaka Toyoda; Yuichiro Shinno; Shinji Kamota; Keita Minami; Shigeo Sakashita; Akira Kumagai; Norikata Takada; Masaki Togashi; Hiroshi Sano; Tatsuya Mori; Katsuya Nonomura

Study Type – Therapy (case series)
Level of Evidence 4

Collaboration


Dive into the Tomoshige Akino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge