Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoteru Yamasaki is active.

Publication


Featured researches published by Tomoteru Yamasaki.


The Journal of Nuclear Medicine | 2014

Radiosynthesis, Photoisomerization, Biodistribution, and Metabolite Analysis of 11C-PBB3 as a Clinically Useful PET Probe for Imaging of Tau Pathology

Hiroki Hashimoto; Kazunori Kawamura; Nobuyuki Igarashi; Makoto Takei; Tomoya Fujishiro; Yoshiharu Aihara; Satoshi Shiomi; Masatoshi Muto; Takehito Ito; Kenji Furutsuka; Tomoteru Yamasaki; Joji Yui; Lin Xie; Maiko Ono; Akiko Hatori; Kazuyoshi Nemoto; Tetsuya Suhara; Makoto Higuchi; Zhang Ming-Rong

2-((1E,3E)-4-(6-(11C-methylamino)pyridin-3-yl)buta-1,3-dienyl)benzo[d]thiazol-6-ol (11C-PBB3) is a clinically useful PET probe that we developed for in vivo imaging of tau pathology in the human brain. To ensure the availability of this probe among multiple PET facilities, in the present study we established protocols for the radiosynthesis and quality control of 11C-PBB3 and for the characterization of its photoisomerization, biodistribution, and metabolism. Methods: 11C-PBB3 was synthesized by reaction of the tert-butyldimethylsilyl desmethyl precursor (1) with 11C-methyl iodide using potassium hydroxide as a base, followed by deprotection. Photoisomerization of 11C-PBB3 under fluorescent light was determined. The biodistribution and metabolite analysis of 11C-PBB3 was determined in mice using the dissection method. Results: 11C-PBB3 was synthesized with 15.4% ± 2.8% radiochemical yield (decay-corrected, n = 50) based on the cyclotron-produced 11C-CO2 and showed an averaged synthesis time of 35 min from the end of bombardment. The radiochemical purity and specific activity of 11C-PBB3 were 98.0% ± 2.3% and 180.2 ± 44.3 GBq/μmol, respectively, at the end of synthesis (n = 50). 11C-PBB3 showed rapid photoisomerization, and its radiochemical purity decreased to approximately 50% at 10 min after exposure to fluorescent light. After the fluorescent light was switched off, 11C-PBB3 retained more than 95% radiochemical purity over 60 min. A suitable brain uptake (1.92% injected dose/g tissue) of radioactivity was observed at 1 min after the probe injection, which was followed by rapid washout from the brain tissue. More than 70% of total radioactivity in the mouse brain homogenate at 5 min after injection represented the unchanged 11C-PBB3, despite its rapid metabolism in the plasma. Conclusion: 11C-PBB3 was produced with sufficient radioactivity and high quality, demonstrating its clinical utility. The present results of radiosynthesis, photoisomerization, biodistribution, and metabolite analysis could be helpful for the reliable production and application of 11C-PBB3 in diverse PET facilities.


Nuclear Medicine and Biology | 2009

In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [11C]gefitinib

Kazunori Kawamura; Tomoteru Yamasaki; Joji Yui; Akiko Hatori; Fujiko Konno; Katsushi Kumata; Toshiaki Irie; Toshimitsu Fukumura; Kazutoshi Suzuki; Iwao Kanno; Ming-Rong Zhang

Gefitinib (Iressa) is a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase. Recent studies confirmed that gefitinib interacted with the breast cancer resistance protein (BCRP) at submicromolar concentrations, whereas other multidrug transporters, including P-glycoprotein (P-gp), showed much lower reactivity toward gefitinib. Recently, many tracers for positron emission tomography (PET) have been prepared to study P-gp function in vivo; however, PET tracers had not been evaluated for both P-gp and BCRP modulation in the brain. Therefore, we evaluated in vivo brain penetration-mediated P-gp and BCRP in mice using [(11)C]gefitinib. Co-injection with gefitinib (over 50 mg/kg), a nonspecific P-gp modulator cyclosporin A (50 mg/kg), and the dual P-gp and BCRP modulator GF120918 (over 5 mg/kg) induced an increase in the brain uptake of [(11)C]gefitinib in mice 30 min after injection. In the PET study of mice, the radioactivity level in the brain with co-injection of GF120918 (5 mg/kg) was three- to fourfold higher than that in control after initial uptake. The radioactivity level in the brain in P-gp and Bcrp knockout mice was approximately eightfold higher than that in wild-type mice 60 min after injection. In conclusion, [(11)C]gefitinib is a promising PET tracer to evaluate the penetration of gefitinib into the brain by combined therapy with P-gp or BCRP modulators, and into brain tumors. Furthermore, PET study with GF120918 is a promising approach for evaluating brain penetration-mediated P-gp and BCRP.


Molecular Imaging and Biology | 2011

Evaluation of Limiting Brain Penetration Related to P-glycoprotein and Breast Cancer Resistance Protein Using [11C]GF120918 by PET in Mice

Kazunori Kawamura; Tomoteru Yamasaki; Fujiko Konno; Joji Yui; Akiko Hatori; Kazuhiko Yanamoto; Hidekatsu Wakizaka; Makoto Takei; Yuichi Kimura; Toshimitsu Fukumura; Ming-Rong Zhang

PurposeGF120918 has a high inhibitory effect on P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). We developed [11C]GF120918 as a positron emission tomography (PET) probe to assess if dual modulation of P-gp and BCRP is useful to evaluate brain penetration.ProceduresPET studies using [11C]GF120918 were conducted on P-gp and/or Bcrp knockout mice as well as wild-type mice.ResultsIn PET studies, the AUCbrain[0–60 min] and K1 value in P-gp/Bcrp knockout mice were nine- and 26-fold higher than that in wild-type mice, respectively. These results suggest that brain penetration of [11C]GF120918 is related to modulation of P-gp and BCRP and is limited by two transporters working together.ConclusionsPET using [11C]GF120918 may be useful for evaluating the function of P-gp and BCRP. PET using P-gp/Bcrp knockout mice may be an effective method to understand the overall contributions the functions of P-gp and BCRP.


Bioorganic & Medicinal Chemistry Letters | 2011

[11C]sorafenib: radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice.

Chiharu Asakawa; Masanao Ogawa; Katsushi Kumata; Masayuki Fujinaga; Koichi Kato; Tomoteru Yamasaki; Joji Yui; Kazunori Kawamura; Akiko Hatori; Toshimitsu Fukumura; Ming-Rong Zhang

Sorafenib (Nexavar, BAY43-9006, 1) is a second-generation, orally active multikinase inhibitor that is approved for the treatment of some cancers in patients. In this Letter, we developed [(11)C]1 as a novel positron emission tomography (PET) probe, and evaluated the influence of ABC transporters-mediated efflux on brain uptake using PET with [(11)C]1 in P-glycoprotein (P-gp)/breast cancer resistance protein (Bcrp) knockout mice versus wild-type mice. [(11)C]1 was synthesized by the reaction of hydrochloride of aniline 2 with [(11)C]phosgene ([(11)C]COCl(2)) to give isocyanate [(11)C]6, followed by reaction with another aniline 3. Small-animal PET study with [(11)C]1 indicated that the radioactivity level (AUC(0-60 min), SUV×min) in the brains of P-gp/Bcrp knockout mice was about three times higher than in wild-type mice.


Bioorganic & Medicinal Chemistry | 2011

Synthesis and evaluation of 6-[1-(2-[18F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline for positron emission tomography imaging of the metabotropic glutamate receptor type 1 in brain

Masayuki Fujinaga; Tomoteru Yamasaki; Kazunori Kawamura; Katsushi Kumata; Akiko Hatori; Joji Yui; Kazuhiko Yanamoto; Yuichiro Yoshida; Masanao Ogawa; Nobuki Nengaki; Jun Maeda; Toshimitsu Fukumura; Ming-Rong Zhang

The purpose of this study was to synthesize 6-[1-(2-[(18)F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline ([(18)F]FPTQ, [(18)F]7a) and to evaluate its potential as a positron emission tomography ligand for imaging metabotropic glutamate receptor type 1 (mGluR1) in the rat brain. Compound [(18)F]7a was synthesized by [(18)F]fluorination of 6-[1-(2-bromo-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline (7b) with potassium [(18)F]fluoride. At the end of synthesis, 1280-1830MBq (n=8) of [(18)F]7a was obtained with >98% radiochemical purity and 118-237GBq/μmol specific activity using 3300-4000MBq of [(18)F]F(-). In vitro autoradiography showed that [(18)F]7a had high specific binding with mGluR1 in the rat brain. Biodistribution study using a dissection method and small-animal PET showed that [(18)F]7a had high uptake in the rat brain. The uptake of radioactivity in the cerebellum was reduced by unlabeled 7a and mGluR1-selective ligand JNJ-16259685 (2), indicating that [(18)F]7a had in vivo specific binding with mGluR1. Because of a low amount of radiolabeled metabolite present in the brain, [(18)F]7a may have a limiting potential for the in vivo imaging of mGluR1 by PET.


The Journal of Nuclear Medicine | 2010

18F-FEAC and 18F-FEDAC: PET of the Monkey Brain and Imaging of Translocator Protein (18 kDa) in the Infarcted Rat Brain

Joji Yui; Jun Maeda; Katsushi Kumata; Kazunori Kawamura; Kazuhiko Yanamoto; Akiko Hatori; Tomoteru Yamasaki; Nobuki Nengaki; Makoto Higuchi; Ming-Rong Zhang

We evaluated two 18F-labeled PET ligands, N-benzyl-N-ethyl-2-[7,8-dihydro-7-(2-18F-fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]acetamide (18F-FEAC) and N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-18F-fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]acetamide (18F-FEDAC), by investigating their kinetics in the monkey brain and by performing in vitro and in vivo imaging of translocator protein (18 kDa) (TSPO) in the infarcted rat brain. Methods: Dissection was used to determine the distribution of 18F-FEAC and 18F-FEDAC in mice, whereas PET was used for a monkey. With each 18F-ligand, in vitro autoradiography and small-animal PET were performed on infarcted rat brains. Results: 18F-FEAC and 18F-FEDAC had a high uptake of radioactivity in the heart, lung, and other TSPO-rich organs of mice. In vitro autoradiography showed that the binding of each 18F-ligand significantly increased on the ipsilateral side of rat brains, compared with the contralateral side. In a small-animal PET study, PET summation images showed the contrast of radioactivity between ipsilateral and contralateral sides. Pretreatment with TSPO ligands N-benzyl-N-ethyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide (AC-5216) or (R)-N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-carboxamide (PK11195) diminished the difference in uptake between the 2 sides. The PET study showed that each 18F-ligand had uptake and distribution patterns in the monkey brain similar to those of 11C-AC-5216. After injection into the monkey during PET, the uptake of each 18F-ligand in the brain decreased over time whereas 11C-AC-5216 did not. In the brain homogenate of mice, the percentage of the fraction corresponding to intact 18F-FEAC and 18F-FEDAC was 68% and 75% at 30 min after injection. In monkey plasma, each 18F-ligand was scarcely metabolized until the end of the PET scan. Conclusion: 18F-FEAC and 18F-FEDAC produced in vitro and in vivo signals allowing visualization of the increase in TSPO expression in the infarcted rat brain. The kinetics of both 18F-ligands in the monkey brain and tolerance for in vivo metabolism suggested their usefulness for imaging studies of TSPO in primates.


NeuroImage | 2011

Visualization of early infarction in rat brain after ischemia using a translocator protein (18 kDa) PET ligand [11C]DAC with ultra-high specific activity.

Joji Yui; Akiko Hatori; Kazunori Kawamura; Kazuhiko Yanamoto; Tomoteru Yamasaki; Masanao Ogawa; Yuichiro Yoshida; Katsushi Kumata; Masayuki Fujinaga; Nobuki Nengaki; Toshimitsu Fukumura; Kazutoshi Suzuki; Ming-Rong Zhang

The aim of this study was to visualize early infarction in the rat brain after ischemia using a translocator protein (TSPO) (18 kDa) PET ligand [(11)C]DAC with ultra-high specific activity (SA) of 3670-4450 GBq/μmol. An infarction model of rat brain was prepared by ischemic surgery and evaluated 2 days after ischemia using small-animal PET and in vitro autoradiography. Early infarction with a small increase of TSPO expression in the brain was visualized using PET with high SA [(11)C]DAC (average 4060 GBq/μmol), but was not distinguished clearly with usually reported SA [(11)C]DAC (37 GBq/μmol). Infarction in the rat brain 4 days after ischemia was visualized using high and usually reported SAs [(11)C]DAC. Displacement experiments with unlabeled TSPO-selective AC-5216 or PK11195 diminished the difference in radioactivity between ipsilateral and contralateral sides, confirming that the increased uptake on the infracted brain was specific to TSPO. In vitro autoradiography with high SA [(11)C]DAC showed that the TSPO expression increased on early infarction in the rat brain. High SA [(11)C]DAC is a useful and sensitive biomarker for the visualization of early infarction and the characterization of TSPO expression which was slightly elevated in the infarcted brain using PET.


PLOS ONE | 2012

PET Imaging of Lung Inflammation with [18F]FEDAC, a Radioligand for Translocator Protein (18 kDa)

Akiko Hatori; Joji Yui; Tomoteru Yamasaki; Lin Xie; Katsushi Kumata; Masayuki Fujinaga; Yuichiro Yoshida; Masanao Ogawa; Nobuki Nengaki; Kazunori Kawamura; Toshimitsu Fukumura; Ming-Rong Zhang

Purpose The translocator protein (18 kDa) (TSPO) is highly expressed on the bronchial and bronchiole epithelium, submucosal glands in intrapulmonary bronchi, pneumocytes and alveolar macrophages in human lung. This study aimed to perform positron emission tomography (PET) imaging of lung inflammation with [18F]FEDAC, a specific TSPO radioligand, and to determine cellular sources enriching TSPO expression in the lung. Methods An acute lung injury model was prepared by intratracheal administration of lipopolysaccharide (LPS) to rat. Uptake of radioactivity in the rat lungs was measured with small-animal PET after injection of [18F]FEDAC. Presence of TSPO was examined in the lung tissue using Western blot and immunohistochemical assays. Results The uptake of [18F]FEDAC increased in the lung with the progress of inflammation by treatment with LPS. Pretreatment with a TSPO-selective ligand PK11195 showed a significant decrease in the lung uptake of [18F]FEDAC due to competitive binding to TSPO. TSPO expression was elevated in the inflamed lung section and its level responded to the [18F]FEDAC uptake and severity of inflammation. Increase of TSPO expression was mainly found in the neutrophils and macrophages of inflamed lungs. Conclusion From this study we conclude that PET with [18F]FEDAC may be a useful tool for imaging TSPO expression and evaluating progress of lung inflammation. Study on human lung using [18F]FEDAC-PET is promising.


Journal of Medicinal Chemistry | 2012

Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain.

Masayuki Fujinaga; Tomoteru Yamasaki; Joji Yui; Akiko Hatori; Lin Xie; Kazunori Kawamura; Chiharu Asagawa; Katsushi Kumata; Yuichiro Yoshida; Masanao Ogawa; Nobuki Nengaki; Toshimitsu Fukumura; Ming-Rong Zhang

We designed three novel positron emission tomography ligands, N-(4-(6-(isopropylamino)pyrimidin-4-yl)-1,3-thiazol-2-yl)-4-[(11)C]methoxy-N-methylbenzamide ([(11)C]6), 4-[(18)F]fluoroethoxy-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]7), and 4-[(18)F]fluoropropoxy-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide ([(18)F]8), for imaging metabotropic glutamate receptor type 1 (mGluR1) in rodent brain. Unlabeled compound 6 was synthesized by benzoylation of 4-pyrimidinyl-2-methylaminothiazole 10, followed by reaction with isopropylamine. Removal of the methyl group in 6 gave phenol precursor 12 for radiosynthesis. Two fluoroalkoxy analogues 7 and 8 were prepared by reacting 12 with tosylates 13 and 14. Radioligands [(11)C]6, [(18)F]7, and [(18)F]8 were synthesized by O-[(11)C]methylation or [(18)F]fluoroalkylation of 12. Compound 6 showed high in vitro binding affinity for mGluR1, whereas 7 and 8 had weak affinity. Autoradiography using rat brain sections showed that [(11)C]6 binding is aligned with the reported distribution of mGluR1 with high specific binding in the cerebellum and thalamus. PET study with [(11)C]6 in rats showed high brain uptake and a similar distribution pattern to that in autoradiography, indicating the usefulness of [(11)C]6 for imaging brain mGluR1.


Journal of Hepatology | 2012

Translocator protein (18 kDa), a potential molecular imaging biomarker for non-invasively distinguishing non-alcoholic fatty liver disease

Lin Xie; Joji Yui; Akiko Hatori; Tomoteru Yamasaki; Katsushi Kumata; Hidekatsu Wakizaka; Yuichiro Yoshida; Masayuki Fujinaga; Kazunori Kawamura; Ming-Rong Zhang

BACKGROUND & AIMS Mitochondrial dysfunction is responsible for liver damage and disease progression in non-alcoholic fatty liver disease (NAFLD). Translocator protein (18 kDa) (TSPO), a mitochondrial transmembrane protein, plays important roles in modulating mitochondrial function. This study explored whether TSPO can be used as an imaging biomarker of non-invasive diagnosis and staging of NAFLD, monitored using positron emission tomography (PET) with a TSPO radioligand [(18)F]FEDAC. METHODS PET with [(18)F]FEDAC, non-enhanced computerized tomography (CT), autoradiography, histopathology, and gene analysis were performed to evaluate and quantify TSPO levels and NAFLD progression in methionine and choline-deficient diet-fed mice. Correlations were analyzed between uptake ratio of radioactivity and NAFLD activity score (NAS) in the liver. RESULTS Uptake of [(18)F]FEDAC obviously increased with disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) (p<0.01). A close correlation was identified between [(18)F]FEDAC uptake ratio and NAS in the liver (Pearsons r=0.922, p=0.000). Specific binding of [(18)F]FEDAC to TSPO in the NAFLD livers was assessed in competition studies with the unlabelled TSPO-selective ligand PK11195. Autoradiography and histopathology confirmed the PET imaging results. Further, the mRNA levels of the functional macromolecular signaling complex composed of TSPO were obviously higher compared to controls. CONCLUSIONS TSPO expression increases in NAFLD and closely correlates with NAFLD progression. TSPO as a specific molecular imaging biomarker may open a novel avenue for non-invasive, reliable, and quantitative diagnosis and staging of NAFLD.

Collaboration


Dive into the Tomoteru Yamasaki's collaboration.

Top Co-Authors

Avatar

Akiko Hatori

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Ming-Rong Zhang

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Joji Yui

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Masayuki Fujinaga

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Katsushi Kumata

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Kazunori Kawamura

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuki Nengaki

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Masanao Ogawa

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar

Hidekatsu Wakizaka

National Institute of Radiological Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge