Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoyuki Nakasa is active.

Publication


Featured researches published by Tomoyuki Nakasa.


Arthritis & Rheumatism | 2008

Expression of microRNA-146 in rheumatoid arthritis synovial tissue

Tomoyuki Nakasa; Shigeru Miyaki; Atsuko Okubo; Keiichiro Nishida; Mitsuo Ochi; Hiroshi Asahara

OBJECTIVE Several microRNA, which are approximately 22-nucleotide noncoding RNAs, exhibit tissue-specific or developmental stage-specific expression patterns and are associated with human diseases. The objective of this study was to identify the expression pattern of microRNA-146 (miR-146) in synovial tissue from patients with rheumatoid arthritis (RA). METHODS The expression of miR-146 in synovial tissue from 5 patients with RA, 5 patients with osteoarthritis (OA), and 1 normal subject was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization and immunohistochemistry of tissue sections. Induction of miR-146 following stimulation with tumor necrosis factor alpha (TNFalpha) and interleukin-1beta (IL-1beta) of cultures of human rheumatoid arthritis synovial fibroblasts (RASFs) was examined by quantitative PCR and RT-PCR. RESULTS Mature miR-146a and primary miR-146a/b were highly expressed in RA synovial tissue, which also expressed TNFalpha, but the 2 microRNA were less highly expressed in OA and normal synovial tissue. In situ hybridization showed primary miR-146a expression in cells of the superficial and sublining layers in synovial tissue from RA patients. Cells positive for miR-146a were primarily CD68+ macrophages, but included several CD3+ T cell subsets and CD79a+ B cells. Expression of miR-146a/b was markedly up-regulated in RASFs after stimulation with TNFalpha and IL-1beta. CONCLUSION This study shows that miR-146 is expressed in RA synovial tissue and that its expression is induced by stimulation with TNFalpha and IL-1beta. Further studies are required to elucidate the function of miR-146 in these tissues.


Genes & Development | 2010

MicroRNA-140 plays dual roles in both cartilage development and homeostasis

Shigeru Miyaki; Tempei Sato; Atsushi Inoue; Shuhei Otsuki; Yoshiaki Ito; Shigetoshi Yokoyama; Yoshio Kato; Fuko Takemoto; Tomoyuki Nakasa; Satoshi Yamashita; Shuji Takada; Martin Lotz; Hiroe Ueno-Kudo; Hiroshi Asahara

Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation, mediated by several proteinases, including Adamts-5. miR-140 is one of a very limited number of noncoding microRNAs (miRNAs) specifically expressed in cartilage; however, its role in development and/or tissue maintenance is largely uncharacterized. To examine miR-140 function in tissue development and homeostasis, we generated a mouse line through a targeted deletion of miR-140. miR-140(-/-) mice manifested a mild skeletal phenotype with a short stature, although the structure of the articular joint cartilage appeared grossly normal in 1-mo-old miR-140(-/-) mice. Interestingly, miR-140(-/-) mice showed age-related OA-like changes characterized by proteoglycan loss and fibrillation of articular cartilage. Conversely, transgenic (TG) mice overexpressing miR-140 in cartilage were resistant to antigen-induced arthritis. OA-like changes in miR-140-deficient mice can be attributed, in part, to elevated Adamts-5 expression, regulated directly by miR-140. We show that miR-140 regulates cartilage development and homeostasis, and its loss contributes to the development of age-related OA-like changes.


Arthritis & Rheumatism | 2009

MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses

Shigeru Miyaki; Tomoyuki Nakasa; Shuhei Otsuki; Shawn P. Grogan; Reiji Higashiyama; Atsushi Inoue; Yoshio Kato; Tempei Sato; Martin Lotz; Hiroshi Asahara

OBJECTIVE MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.


Arthritis & Rheumatism | 2009

Expression of MicroRNA-146a in osteoarthritis cartilage.

Keiichiro Yamasaki; Tomoyuki Nakasa; Shigeru Miyaki; Masakazu Ishikawa; Masataka Deie; Nobuo Adachi; Yuji Yasunaga; Hiroshi Asahara; Mitsuo Ochi

OBJECTIVE A role of microRNA, which are approximately 22-nucleotide noncoding RNAs, has recently been recognized in human diseases. The objective of this study was to identify the expression pattern of microRNA-146a (miR-146a) in cartilage from patients with osteoarthritis (OA). METHODS The expression of miR-146a in cartilage from 15 patients with OA was analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and by in situ hybridization. Induction of the expression of miR-146a by cultures of normal human articular chondrocytes following stimulation with interleukin-1beta (IL-1beta) was examined by quantitative RT-PCR. RESULTS All cartilage samples were divided into 3 groups according to a modification of the Mankin score (grade I = mild OA scored 0-5, grade II = moderate OA scored 6-10, and grade III = severe OA scored 11-14). In grade I OA cartilage samples, the expression of miR-146a and COL2A1 was significantly higher than that in the other groups (P < 0.05). In grades II and III OA cartilage, the expression of miR-146a and COL2A1 was decreased, whereas the expression of matrix metalloproteinase 13 (MMP-13) was elevated in grade II OA cartilage. These data showed that miR-146a is expressed intensely in cartilage with a low Mankin grade and that miR-146a expression decreases in parallel with the level of MMP-13 expression. Tissue section in situ hybridization of primary miR-146a (pri-miR-146a) revealed that pri-miR-146a was expressed in chondrocytes residing in all tissue layers, especially in the superficial layer, where it was intensely expressed. The expression of miR-146 was markedly elevated by IL-1beta stimulation in human chondrocytes in vitro. CONCLUSION This study shows that miR-146 is intensely expressed in low-grade OA cartilage and that its expression is induced by stimulation of IL-1beta. Thus, miR-146 might play a role in OA cartilage pathogenesis.


Arthritis & Rheumatism | 2011

The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis.

Tomoyuki Nakasa; Hayatoshi Shibuya; Yoshihiko Nagata; Takuya Niimoto; Mitsuo Ochi

OBJECTIVE MicroRNA, a class of noncoding RNA, play a role in human diseases. MicroRNA-146a (miR-146a) is a negative regulator of immune and inflammatory responses, and is strongly expressed in rheumatoid arthritis (RA) synovium and peripheral blood mononuclear cells (PBMCs). This study was undertaken to examine whether miR-146a expression inhibits osteoclastogenesis, and whether administration of miR-146a prevents joint destruction in mice with collagen-induced arthritis (CIA). METHODS PBMCs from healthy volunteers were isolated and seeded in culture plates. The following day, double-stranded miR-146a was transfected and cultured in the presence of macrophage colony-stimulating factor and either tumor necrosis factor α or RANKL. After 3 weeks, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were counted. Three days after miR-146a culture, the expression of c-Jun, nuclear factor of activated T cells c1 (NF-ATc1), PU.1, and TRAP was evaluated by quantitative reverse transcriptase-polymerase chain reaction. After the onset of distinct arthritis in mice with CIA, double-stranded miR-146a or nonspecific double-stranded RNA was administered twice by intravenous injection. Radiographic and histologic examinations were performed at 4 weeks. RESULTS The number of TRAP-positive multinucleated cells in human PBMCs was significantly reduced by miR-146a in a dose-dependent manner. The expression of c-Jun, NF-ATc1, PU.1, and TRAP in PBMCs was significantly down-regulated by miR-146a. Administration of miR-146a prevented joint destruction in mice with CIA, although it did not completely ameliorate inflammation. CONCLUSION Our findings indicate that expression of miR-146a inhibits osteoclastogenesis and that administration of double-stranded miR-146a prevents joint destruction in arthritic mice. Administration of miR-146a has potential as a novel therapeutic target for bone destruction in RA.


BMC Musculoskeletal Disorders | 2010

MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients

Takuya Niimoto; Tomoyuki Nakasa; Masakazu Ishikawa; Atsushi Okuhara; Bunichiro Izumi; Masataka Deie; Osami Suzuki; Nobuo Adachi; Mitsuo Ochi

BackgroundInterleukin (IL)-17 is an important factor in rheumatoid arthritis (RA) pathogenesis. MicroRNA (miRNA)s are a family of non coding RNAs and associated with human diseases including RA. The purpose of this study is to identify the miRNAs in the differentiation of IL-17 producing cells, and analyze their expression pattern in the peripheral blood mononuclear cells (PBMC) and synovium from RA patients.MethodsIL-17 producing cells were expanded from CD4+T cell. MiRNA microarray was performed to identify the miRNAs in the differentiation of IL-17 producing cells. Quantitative polymerase chain reaction was performed to examine the expression patterns of the identified miRNAs in the PBMC and synovium from RA and osteoarthritis (OA) patients. Double staining combining in situ hybridization and immunohistochemistry of IL-17 was performed to analyze the expression pattern of identified miRNA in the synovium.ResultsSix miRNAs, let-7a, miR-26, miR-146a/b, miR-150, and miR-155 were significantly up regulated in the IL-17 producing T cells. The expression of miR-146a and IL-17 was higher than in PBMC in the patients with low score of Larsen grade and short disease duration. MiR-146a intensely expressed in RA synovium in comparison to OA. MiR-146a expressed intensely in the synovium with hyperplasia and high expression of IL-17 from the patients with high disease activity. Double staining revealed that miR-146a expressed in IL-17 expressing cells.ConclusionThese results indicated that miR-146a was associated with IL-17 expression in the PBMC and synovium in RA patients. There is the possibility that miR-146a participates in the IL-17 expression.


Journal of Cellular and Molecular Medicine | 2010

Acceleration of muscle regeneration by local injection of muscle‐specific microRNAs in rat skeletal muscle injury model

Tomoyuki Nakasa; Masakazu Ishikawa; Ming Shi; Hayatoshi Shibuya; Nobuo Adachi; Mitsuo Ochi

MicroRNA (miRNA)s are a class of non‐coding RNAs that regulate gene expression post‐transcriptionally. Muscle‐specific miRNA, miRNA (miR)‐1, miR‐133 and miR‐206 play a crucial role in the regulation of muscle development and homeostasis. Muscle injuries are a common muscloskeletal disorder, and the most effective treatment has not been established yet. The purpose of this study was to demonstrate that a local injection of double‐stranded (ds) miR‐1, miR‐133 and 206 can accelerate muscle regeneration in a rat skeletal muscle injury model. After the laceration of the rat tibialis anterior muscle, ds miR‐1, 133 and 206 mixture mediated atelocollagen was injected into the injured site. The control group was injected with control siRNA. At 1 week after injury, an injection of miRNAs could enhance muscle regeneration morphologically and physiologically, and prevent fibrosis effectively compared to the control siRNA. Administration of exogenous miR‐1, 133 and 206 can induce expression of myogenic markers, MyoD1, myogenin and Pax7 in mRNA and expression in the protein level at 3 and 7 days after injury. The combination of miR‐1, 133 and 206 can promote myotube differentiation, and the expression of MyoD1, myogenin and Pax7 were up‐regulated in C2C12 cells in vitro. Local injection of miR‐1, 133 and 206 could be a novel therapeutic strategy in the treatment of skeletal muscle injury.


FEBS Letters | 2015

Mesenchymal‐stem‐cell‐derived exosomes accelerate skeletal muscle regeneration

Yoshihiro Nakamura; Shigeru Miyaki; Hiroyuki Ishitobi; Sho Matsuyama; Tomoyuki Nakasa; Naosuke Kamei; Takayuki Akimoto; Yukihito Higashi; Mitsuo Ochi

Mesenchymal stem cell (MSC) transplantation is used for treatment of many diseases. The paracrine role of MSCs in tissue regeneration is attracting particular attention. We investigate the role of MSC exosomes in skeletal muscle regeneration. MSC exosomes promote myogenesis and angiogenesis in vitro, and muscle regeneration in an in vivo model of muscle injury. Although MSC exosomes had low concentrations of muscle‐repair‐related cytokines, a number of repair‐related miRNAs were identified. This study suggests that the MSC‐derived exosomes promote muscle regeneration by enhancing myogenesis and angiogenesis, which is at least in part mediated by miRNAs such as miR‐494.


Arthritis & Rheumatism | 2009

Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded microRNA-15a

Yoshihiko Nagata; Tomoyuki Nakasa; Yu Mochizuki; Masakazu Ishikawa; Shigeru Miyaki; Hayatoshi Shibuya; Keiichiro Yamasaki; Nobuo Adachi; Hiroshi Asahara; Mitsuo Ochi

OBJECTIVE MicroRNA is a family of noncoding RNAs that exhibit tissue-specific or developmental stage-specific expression patterns and are associated with human diseases. MicroRNA-15a (miR-15a) is reported to induce cell apoptosis by negatively regulating the expression of Bcl-2, which suppresses the apoptotic processes. The purpose of this study was to investigate whether double-stranded miR-15a administered by intraarticular injection could be taken up by cells and could induce Bcl-2 dysfunction and cell apoptosis in the synovium of arthritic mice in vivo. METHODS Autoantibody-mediated arthritis was induced in male DBA/1J mice. In the experimental group, double-stranded miR-15a labeled with FAM-atelocollagen complex was injected into the knee joint. In the control group, control small interfering RNA-atelocollagen complex was injected into the knee joint. Synovial expression of miR-15a was analyzed by quantitative polymerase chain reaction, FAM by fluorescence microscopy, Bcl-2 by Western blotting, and Bcl-2 and caspase 3 by immunohistochemistry. RESULTS The expression of miR-15a in the synovium of the experimental group was significantly higher than that in the control group. Green fluorescence emission of FAM was observed in the synovium of the experimental group. Bcl-2 protein was down-regulated and the expression of caspase 3 was increased as compared with that in the control group. CONCLUSION These results indicate that the induction of cell apoptosis after intraarticular injection of double-stranded miR-15a occurs through inhibition of the translation of Bcl-2 protein in arthritic synovium.


Rheumatology | 2010

Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro

Mohamed Mahmoud Abouheif; Tomoyuki Nakasa; Hayatoshi Shibuya; Takuya Niimoto; Wirat Kongcharoensombat; Mitsuo Ochi

OBJECTIVE miRNAs, which are non-coding RNAs, play a role in the pathogenesis of disease including OA. miRNA (miR)-34a is induced by p53, subsequently leading to cell apoptosis, which is one of the major factors in the pathogenesis of OA. The purpose of this study is to investigate the effect of silencing miR-34a on IL-1β-induced chondrocyte apoptosis in a rat OA model in vitro. METHODS Locked nucleotide analogue (LNA)-modified miR-34a-specific anti-sense was transfected into rat chondrocyte monolayer culture. After that, IL-1β was added to the chondrocytes to create an OA model in vitro. The effect of silencing miR-34a on the prevention of chondrocyte apoptosis was analysed by assessment of the expression levels of Col2a1 and iNOS, also through assessment of cell viability and TUNEL staining. RESULTS The expression of miR-34a was significantly up-regulated by IL-1β. Silencing of miR-34a significantly prevented IL-1β-induced down-regulation of Col2a1, as well as IL-1β-induced up-regulation of iNOS. Finally, MiR-34a inhibitor could also reduce TUNEL-positive cells. CONCLUSION Silencing of miR-34a by LNA-modified anti-sense could effectively reduce rat chondrocyte apoptosis induced by IL-1β. This present study revealed that silencing of miR-34a might develop a novel intervention for OA treatment through the prevention of cartilage degradation.

Collaboration


Dive into the Tomoyuki Nakasa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masataka Deie

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge