Tomoyuki Ohe
Keio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomoyuki Ohe.
Current Drug Metabolism | 2002
Jerome H. Hochman; Masayo Yamazaki; Tomoyuki Ohe; Jiunn H. Lin
The pharmacological effects of a drug are highly dependent on the absorption, metabolism, elimination, and distribution of the drug. In the past few years it has become apparent that transport proteins play a major role in regulating the distribution, elimination and metabolism of some drugs. As a consequence of our new understanding of the influence of transport proteins on the pharmacokinetic and pharmacodynamic behavior of drugs, increasing attention has been focused on the potential for drug-drug interactions arising from interactions with drug transport proteins. The efflux transporter P-glycoprotein (P-gp) has received the most attention with regard to its role in restricting drug absorption and distribution and as a potential source for variability in drug pharmacokinetics and pharmacodynamics. This review will focus on the evaluation of drug candidates to assess the potential for drug interactions at the level of P-gp. We will discuss the role of P-gp in drug disposition, the biochemistry of P-gp efflux as it relates to model systems to study drug interactions with P-gp, and the implementation of P-gp assay models within the drug discovery process.
Molecular Pharmacology | 2001
Akio Kanatani; Mikiko Hata; Satoshi Mashiko; Akane Ishihara; Osamu Okamoto; Yuji Haga; Tomoyuki Ohe; Tetsuya Kanno; Naomi Murai; Yasuyuki Ishii; Takahiro Fukuroda; Takehiro Fukami; Masaki Ihara
Neuropeptide Y (NPY) is a potent feeding stimulant. The orexigenic effect of NPY might be caused in part by the action of Y1 receptors. However, the existence of multiple NPY receptors including a possible novel feeding receptor has made it difficult to determine the relative importance of the Y1 receptor in feeding regulation. Herein we certified that the Y1 receptor is a major feeding receptor of NPY by using the potent and selective Y1 antagonist (-)-2-[1-(3-chloro-5-isopropyloxycarbonylaminophenyl)ethylamino]-6-[2-(5-ethyl-4-methyl-1,3-thiazol-2-yl)ethyl]-4-morpholinopyridine (J-115814) and Y1 receptor-deficient (Y1-/-) mice. J-115814 displaced (125)I-peptide YY binding to cell membranes expressing cloned human, rat, and murine Y(1) receptors with K(i) values of 1.4, 1.8, and 1.9 nM, respectively, and inhibited NPY (10 nM)-induced increases in intracellular calcium levels via human Y1 receptors (IC(50) = 6.8 nM). In contrast, J-115814 showed low affinities for human Y2 (K(i) > 10 microM), Y4 (K(i) = 640 nM) and Y5 receptors (K(i) = 6000 nM). Intracerebroventricular (ICV) (10-100 microg) and intravenous (IV) (0.3-30 mg/kg) administration of J-115814 significantly and dose-dependently suppressed feeding induced by ICV NPY (5 microg) in satiated Sprague-Dawley rats. Intraperitoneal (IP) administration of J-115814 (3-30 mg/kg) significantly attenuated spontaneous feeding in db/db and C57BL6 mice. Feeding induced by ICV NPY (5 microg) was unaffected by IP-injected J-115814 (30 mg/kg) in Y1-/- mice and was suppressed in wild-type and Y5-/- mice. These findings clearly suggest that J-115814 inhibits feeding behaviors through the inhibition of the typical Y1 receptor. We conclude that the Y1 receptor plays a key role in regulating food intake.
Nature Communications | 2016
Tetsuya Saito; Yoshinobu Ichimura; Keiko Taguchi; Takafumi Suzuki; Tsunehiro Mizushima; Kenji Takagi; Yuki Hirose; Masayuki Nagahashi; Tetsuro Iso; Toshiaki Fukutomi; Maki Ohishi; Keiko Endo; Takefumi Uemura; Yasumasa Nishito; Shujiro Okuda; Miki Obata; Tsuguka Kouno; Riyo Imamura; Yukio Tada; Rika Obata; Daisuke Yasuda; Kyoko Takahashi; Tsutomu Fujimura; Jingbo Pi; Myung-Shik Lee; Takashi Ueno; Tomoyuki Ohe; Tadahiko Mashino; Toshifumi Wakai; Hirotatsu Kojima
p62/Sqstm1 is a multifunctional protein involved in cell survival, growth and death, that is degraded by autophagy. Amplification of the p62/Sqstm1 gene, and aberrant accumulation and phosphorylation of p62/Sqstm1, have been implicated in tumour development. Herein, we reveal the molecular mechanism of p62/Sqstm1-dependent malignant progression, and suggest that molecular targeting of p62/Sqstm1 represents a potential chemotherapeutic approach against hepatocellular carcinoma (HCC). Phosphorylation of p62/Sqstm1 at Ser349 directs glucose to the glucuronate pathway, and glutamine towards glutathione synthesis through activation of the transcription factor Nrf2. These changes provide HCC cells with tolerance to anti-cancer drugs and proliferation potency. Phosphorylated p62/Sqstm1 accumulates in tumour regions positive for hepatitis C virus (HCV). An inhibitor of phosphorylated p62-dependent Nrf2 activation suppresses the proliferation and anticancer agent tolerance of HCC. Our data indicate that this Nrf2 inhibitor could be used to make cancer cells less resistant to anticancer drugs, especially in HCV-positive HCC patients.
Journal of Medicinal Chemistry | 2008
Nagaaki Sato; Makoto Jitsuoka; Takunobu Shibata; Tomoko Hirohashi; Katsumasa Nonoshita; Minoru Moriya; Yuji Haga; Aya Sakuraba; Makoto Ando; Tomoyuki Ohe; Hisashi Iwaasa; Akira Gomori; Akane Ishihara; Akio Kanatani; Takehiro Fukami
(9S)-9-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one ((S)-1) was identified as a selective and orally active neuropeptide Y Y5 receptor antagonist. The structure-activity relationship for this structural class was investigated and showed that limited substitution on the phenyl ring was tolerated and that modification of the 4,4-dimethyl group of the cyclohexenone and the 3,3-dimethyl group of the xanthenone parts slightly improved potency. The plasma concentration-time profile after oral administration of (S)-1 in Sprague-Dawley (SD) rats showed significant in vivo racemization of (S)-1 and that (S)-1 is cleared much more quickly than (R)-1. The duration of (S)-1 in SD rats after oral administration of (RS)-1 racemate was twice as long as that following oral administration of (S)-1. The C max values of (S)-1 after administration of (S)-1 and (RS)-1 were comparable, and the brain to plasma ratio for (S)-1 was 0.34 in SD rats. In our acute D-Trp (34)NPY-induced food intake model, both (S)-1 and (RS)-1 showed potent and dose-dependent efficacy. Therefore, the use of (RS)-1 is suitable for studies that require sustained plasma exposure of (S)-1.
Molecular Pharmacology | 2011
Jun Ichi Eiki; Yasufumi Nagata; Mayumi Futamura; Kaori Sasaki-Yamamoto; Tomoharu Iino; Teruyuki Nishimura; Masato Chiba; Sumika Ohyama; Riki Yoshida-Yoshimioto; Kenji Fujii; Hideka Hosaka; Hiroko Goto-Shimazaki; Akito Kadotani; Tomoyuki Ohe; Songnian Lin; Ronald B. Langdon; Joel P. Berger
Glucokinase activators (GKAs) are small-molecule agents that enhance glucose sensing by pancreatic β cells and glucose metabolism by hepatocytes. There is strong interest in these agents as potential therapies for type 2 diabetes. Here, we report key pharmacokinetic and pharmacodynamic findings from preclinical studies of the GKA 3-[[6-(ethylsulfonyl)-3-pyridinyl]oxy]-5-[(1S)-2-hydroxy-1-methylethoxy]-N-(1-methyl-1H-pyrazol-3-yl)benzamide (MK-0941). Incubated in vitro with recombinant human glucokinase, 1 μM MK-0941 lowered the S0.5 of this enzyme for glucose from 6.9 to 1.4 mM and increased the maximum velocity of glucose phosphorylation by 1.5-fold. In 2.5 and 10 mM glucose, the EC50 values for activation of GK by MK-0941 were 0.240 and 0.065 μM, respectively. Treatment of isolated rat islets of Langerhans and hepatocytes with 10 μM MK-0941 increased insulin secretion by 17-fold and glucose uptake up to 18-fold, respectively. MK-0941 exhibited strong glucose-lowering activity in C57BL/6J mice maintained on a high-fat diet (HFD), db/db mice, HFD plus low-dose streptozotocin-treated mice, and nondiabetic dogs. In both mice and dogs, oral doses of MK-0941 were rapidly absorbed and rapidly cleared from the blood; plasma levels reached maximum within 1 h and fell thereafter with a half-life of ∼2 h. During oral glucose tolerance testing in dogs, MK-0941 reduced total area-under-the-curve postchallenge (0–2 h) plasma glucose levels by up to 48% compared with vehicle-treated controls. When administered twice daily to mice for 16 days, and once daily to the dog for 4 days, MK-0941 remained efficacious on successive days. These findings support further investigation of MK-0941 as a potential therapeutic agent for treatment of type 2 diabetes.
Drug Metabolism and Disposition | 2012
Atsushi Shimizu; Tomoyuki Ohe; Masato Chiba
Glucuronidation not only plays a detoxifying role in living body, but it also can complicate pharmacological and toxicological profiles of new drug candidates by forming active and reactive conjugated metabolites. The opportunity to elucidate structure of conjugated metabolites has increased in drug metabolism studies at the early development stage. General methodologies for the structure elucidation of glucuronide conjugate(s) include liquid chromatography-tandem mass spectrometry (LC-MS/MS) and NMR spectroscopy. In many cases, LC-MS/MS alone cannot unequivocally identify the site(s) of conjugation in isomeric glucuronidations. In the present study, we established a new strategy for the structure elucidation of glucuronide conjugates using ion mobility spectrometry (IMS)-mass spectrometry. Linear correlation between calculated collision cross-sections (CCS) and actual drift times from IMS was found for each set of parent compound (raloxifene, losartan, telmisartan, and estradiol) and the corresponding MS/MS product ions. Thus, obtained regression lines accurately and selectively projected the actual drift times of authentic standards of glucuronide conjugate based on the theoretical CCS values. The established method was used for the accurate assignment of predominant formation of phenolic glucuronide conjugate (SCH 60663) in the isomeric (phenolic and benzylic) glucuronidations of ezetimibe in the incubated sample with cryopreserved human hepatocytes. This application demonstrates the potential to facilitate the structure identification of glucuronide conjugates at the early development stage of new drug candidates.
Journal of Medicinal Chemistry | 2009
Nagaaki Sato; Makoto Ando; Shiho Ishikawa; Makoto Jitsuoka; Keita Nagai; Hirobumi Takahashi; Aya Sakuraba; Hiroyasu Tsuge; Hidefumi Kitazawa; Hisashi Iwaasa; Satoshi Mashiko; Akira Gomori; Ryuichi Moriya; Naoko Fujino; Tomoyuki Ohe; Akane Ishihara; Akio Kanatani; Takehiro Fukami
A series of novel imidazoline derivatives was synthesized and evaluated as neuropeptide Y (NPY) Y5 receptor antagonists. Optimization of previously reported imidazoline leads, 1a and 1b, was attempted by introduction of substituents at the 5-position on the imidazoline ring and modification of the bis(4-fluorphenyl) moiety. A number of potent derivatives without human ether-a-go-go related gene potassium channel (hERG) activity were identified. Selected compounds, including 2a, were shown to have excellent brain and CSF permeability. Compound 2a displayed a suitable pharmacokinetic profile for chronic in vivo studies and potently inhibited D-Trp(34)NPY-induced acute food intake in rats. Oral administration of 2a resulted in a potent reduction of body weight in a diet-induced obese mouse model.
Journal of Pharmacology and Experimental Therapeutics | 2014
Yasuo Uchida; Kentaro Wakayama; Sumio Ohtsuki; Masato Chiba; Tomoyuki Ohe; Yasuyuki Ishii; Tetsuya Terasaki
The aim of this study was to investigate whether in vivo drug distribution in brain in monkeys can be reconstructed by integrating four factors: protein expression levels of P-glycoprotein (P-gp)/multidrug resistance protein 1 at the blood-brain barrier (BBB), in vitro transport activity per P-gp molecule, and unbound drug fractions in plasma and brain. For five P-gp substrates (indinavir, quinidine, loperamide, paclitaxel, and verapamil) and one nonsubstrate (diazepam), in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of cynomolgus monkey P-gp–transfected LLC-PK1 and parental cells. In vivo P-gp functions at the BBB were reconstructed from in vitro P-gp transport activities and P-gp expression levels in transfected cells and cynomolgus brain microvessels. Brain-to-plasma concentration ratios (Kp,brain) were reconstructed by integrating the reconstructed in vivo P-gp functions with drug unbound fractions in plasma and brain. For all compounds, the reconstructed Kp,brain values were within a 3-fold range of observed values, as determined by constant intravenous infusion in adult cynomolgus monkeys. Among four factors, plasma unbound fraction was the most sensitive factor to species differences in Kp,brain between monkeys and mice. Unbound brain-to-plasma concentration ratios (Kp,uu,brain) were reconstructed as the reciprocal of the reconstructed in vivo P-gp functions, and the reconstructed Kp,uu,brain values were within a 3-fold range of in vivo values, which were estimated from observed Kp,brain and unbound fractions. This study experimentally demonstrates that brain distributions of P-gp substrates and nonsubstrate can be reconstructed on the basis of pharmacoproteomic concept in monkeys, which serve as a robust model of drug distribution in human brain.
European Journal of Pharmacology | 2010
Ken Shimamura; Yasuhisa Miyamoto; Hidefumi Kitazawa; Maki Kanesaka; Ryo Yoshimoto; Katsumi Aragane; Naomi Morita; Tomoyuki Ohe; Toshiyuki Takahashi; Tsuyoshi Nagase; Nagaaki Sato; Shigeru Tokita
The elongase of long chain fatty acids family 6 (ELOVL6) is a rate-limiting enzyme for the elongation of saturated and monounsaturated long chain fatty acids. ELOVL6 is abundantly expressed in lipogenic tissues such as liver, and its mRNA expression is up-regulated in obese model animals. ELOVL6 deficient mice are protected from high-fat-diet-induced insulin resistance, suggesting that ELOVL6 might be a new therapeutic target for diabetes. We previously identified an indoledione compound, Compound A, as the first inhibitor for mammalian ELOVL6. In this study, we discovered a novel compound, Compound B, and characterized its biochemical and pharmacological properties. Compound B has a more appropriate profile for use as a pharmacological tool compared to Compound A. Chronic treatment with Compound B in model animals, diet-induced obesity (DIO) and KKAy mice, showed significant reduction in hepatic fatty acid composition, suggesting that it effectively inhibits ELOVL6 activity in the liver. However, no improvement in insulin resistance by ELOVL6 inhibition was found in these model animals. Further studies need to address the impact of ELOVL6 inhibition on pharmacological abnormalities in several model animals. This is the first report on pharmacology data from chronic studies using a selective ELOVL6 inhibitor. Compound B appears to be a useful tool to further understand the physiological roles of ELOVL6 and to evaluate the therapeutic potential of ELOVL6 inhibitors.
Bioorganic & Medicinal Chemistry | 2009
Makoto Ando; Nagaaki Sato; Tsuyoshi Nagase; Keita Nagai; Shiho Ishikawa; Hirobumi Takahashi; Norikazu Ohtake; Junko Ito; Mioko Hirayama; Yuko Mitobe; Hisashi Iwaasa; Akira Gomori; Hiroko Matsushita; Kiyoshi Tadano; Naoko Fujino; Sachiko Tanaka; Tomoyuki Ohe; Akane Ishihara; Akio Kanatani; Takehiro Fukami
A series of 2-pyridone-containing imidazoline derivatives was synthesized and evaluated as neuropeptide Y Y5 receptor antagonists. Optimization of the 2-pyridone structure on the 2-position of the imidazoline ring led to identification of 1-(difluoromethyl)-5-[(4S,5S)-4-(4-fluorophenyl)-4-(6-fluoropyridin-3-yl)-5-methyl-4,5-dihydro-1H-imidazol-2-yl]pyridin-2(1H)-one (7m). Compound 7m displayed statistically significant inhibition of food intake in an agonist-induced food intake model in SD rats and no adverse cardiovascular effects in anesthetized dogs. In addition, markedly higher brain penetrability and a lower plasma Occ90 value were observed in P-gp-deficient mdr1a (-/-) mice compared to mdr1a (+/+) mice after oral administration of 7m.
Collaboration
Dive into the Tomoyuki Ohe's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs