Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomoyuki Yamaguchi is active.

Publication


Featured researches published by Tomoyuki Yamaguchi.


Cell | 2008

Regulatory T Cells and Immune Tolerance

Shimon Sakaguchi; Tomoyuki Yamaguchi; Takashi Nomura; Masahiro Ono

Regulatory T cells (Tregs) play an indispensable role in maintaining immunological unresponsiveness to self-antigens and in suppressing excessive immune responses deleterious to the host. Tregs are produced in the thymus as a functionally mature subpopulation of T cells and can also be induced from naive T cells in the periphery. Recent research reveals the cellular and molecular basis of Treg development and function and implicates dysregulation of Tregs in immunological disease.


Science | 2008

CTLA-4 Control over Foxp3+ Regulatory T Cell Function

Kajsa Wing; Yasushi Onishi; Paz Prieto-Martin; Tomoyuki Yamaguchi; Makoto Miyara; Zoltan Fehervari; Takashi Nomura; Shimon Sakaguchi

Naturally occurring Foxp3+CD4+ regulatory T cells (Tregs) are essential for maintaining immunological self-tolerance and immune homeostasis. Here, we show that a specific deficiency of cytotoxic T lymphocyte antigen 4 (CTLA-4) in Tregs results in spontaneous development of systemic lymphoproliferation, fatal T cell–mediated autoimmune disease, and hyperproduction of immunoglobulin E in mice, and it also produces potent tumor immunity. Treg-specific CTLA-4 deficiency impairs in vivo and in vitro suppressive function of Tregs—in particular, Treg-mediated down-regulation of CD80 and CD86 expression on dendritic cells. Thus, natural Tregs may critically require CTLA-4 to suppress immune responses by affecting the potency of antigen-presenting cells to activate other T cells.


Immunity | 2009

Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor

Makoto Miyara; Yumiko Yoshioka; Akihiko Kitoh; Tomoko Shima; Kajsa Wing; Akira Niwa; Christophe Parizot; Cécile Taflin; Toshio Heike; Dominique Valeyre; Alexis Mathian; Tatsutoshi Nakahata; Tomoyuki Yamaguchi; Takashi Nomura; Masahiro Ono; Zahir Amoura; Guy Gorochov; Shimon Sakaguchi

FoxP3 is a key transcription factor for the development and function of natural CD4(+) regulatory T cells (Treg cells). Here we show that human FoxP3(+)CD4(+) T cells were composed of three phenotypically and functionally distinct subpopulations: CD45RA(+)FoxP3(lo) resting Treg cells (rTreg cells) and CD45RA(-)FoxP3(hi) activated Treg cells (aTreg cells), both of which were suppressive in vitro, and cytokine-secreting CD45RA(-)FoxP3(lo) nonsuppressive T cells. The proportion of the three subpopulations differed between cord blood, aged individuals, and patients with immunological diseases. Terminally differentiated aTreg cells rapidly died whereas rTreg cells proliferated and converted into aTreg cells in vitro and in vivo. This was shown by the transfer of rTreg cells into NOD-scid-common gamma-chain-deficient mice and by TCR sequence-based T cell clonotype tracing in peripheral blood in a normal individual. Taken together, the dissection of FoxP3(+) cells into subsets enables one to analyze Treg cell differentiation dynamics and interactions in normal and disease states, and to control immune responses through manipulating particular FoxP3(+) subpopulations.


Journal of Experimental Medicine | 2007

Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model

Keiji Hirota; Hiroyuki Yoshitomi; Motomu Hashimoto; Shinji Maeda; Shin Teradaira; Naoshi Sugimoto; Tomoyuki Yamaguchi; Takashi Nomura; Hiromu Ito; Takashi Nakamura; Noriko Sakaguchi; Shimon Sakaguchi

This report shows that interleukin (IL) 17–producing T helper type 17 (Th17) cells predominantly express CC chemokine receptor (CCR) 6 in an animal model of rheumatoid arthritis (RA). Th17 cells induced in vivo in normal mice via homeostatic proliferation similarly express CCR6, whereas those inducible in vitro by transforming growth factor β and IL-6 additionally need IL-1 and neutralization of interferon (IFN) γ and IL-4 for CCR6 expression. Forced expression of RORγt, a key transcription factor for Th17 cell differentiation, induces not only IL-17 but also CCR6 in naive T cells. Furthermore, Th17 cells produce CCL20, the known ligand for CCR6. Synoviocytes from arthritic joints of mice and humans also produce a large amount of CCL20, with a significant correlation (P = 0.014) between the amounts of IL-17 and CCL20 in RA joints. The CCL20 production by synoviocytes is augmented in vitro by IL-1β, IL-17, or tumor necrosis factor α, and is suppressed by IFN-γ or IL-4. Administration of blocking anti-CCR6 monoclonal antibody substantially inhibits mouse arthritis. Thus, the joint cytokine milieu formed by T cells and synovial cells controls the production of CCL20 and, consequently, the recruitment of CCR6+ arthritogenic Th17 cells to the inflamed joints. These results indicate that CCR6 expression contributes to Th17 cell function in autoimmune disease, especially in autoimmune arthritis such as RA.


International Immunology | 2009

Regulatory T cells: how do they suppress immune responses?

Shimon Sakaguchi; Kajsa Wing; Yasushi Onishi; Paz Prieto-Martin; Tomoyuki Yamaguchi

Regulatory T cells (Tregs), either natural or induced, suppress a variety of physiological and pathological immune responses. One of the key issues for understanding Treg function is to determine how they suppress other lymphocytes at the molecular level in vivo and in vitro. Here we propose that there may be a key suppressive mechanism that is shared by every forkhead box p3 (Foxp3)(+) Treg in vivo and in vitro in mice and humans. When this central mechanism is abrogated, it causes a breach in self-tolerance and immune homeostasis. Other suppressive mechanisms may synergistically operate with this common mechanism depending on the environment and the type of an immune response. Further, Treg-mediated suppression is a multi-step process and impairment or augmentation of each step can alter the ultimate effectiveness of Treg-mediated suppression. These findings will help to design effective ways for controlling immune responses by targeting Treg suppressive functions.


Journal of Experimental Medicine | 2007

T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis

Keiji Hirota; Motomu Hashimoto; Hiroyuki Yoshitomi; Satoshi Tanaka; Takashi Nomura; Tomoyuki Yamaguchi; Yoichiro Iwakura; Noriko Sakaguchi; Shimon Sakaguchi

This report shows that highly self-reactive T cells produced in mice as a result of genetically altered thymic T cell selection spontaneously differentiate into interleukin (IL)-17–secreting CD4+ helper T (Th) cells (Th17 cells), which mediate an autoimmune arthritis that clinically and immunologically resembles rheumatoid arthritis (RA). The thymus-produced self-reactive T cells, which become activated in the periphery via recognition of major histocompatibility complex/self-peptide complexes, stimulate antigen-presenting cells (APCs) to secrete IL-6. APC-derived IL-6, together with T cell–derived IL-6, drives naive self-reactive T cells to differentiate into arthritogenic Th17 cells. Deficiency of either IL-17 or IL-6 completely inhibits arthritis development, whereas interferon (IFN)-γ deficiency exacerbates it. The generation, differentiation, and persistence of arthritogenic Th17 cells per se are, however, insufficient for producing overt autoimmune arthritis. Yet overt disease is precipitated by further expansion and activation of autoimmune Th17 cells, for example, via IFN-γ deficiency, homeostatic proliferation, or stimulation of innate immunity by microbial products. Thus, a genetically determined T cell self-reactivity forms a cytokine milieu that facilitates preferential differentiation of self-reactive T cells into Th17 cells. Extrinsic or intrinsic stimuli further expand these cells, thereby triggering autoimmune disease. Intervention in these events at cellular and molecular levels is useful to treat and prevent autoimmune disease, in particular RA.


PLOS Pathogens | 2011

HTLV-1 bZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation In Vivo

Yorifumi Satou; Jun Ichirou Yasunaga; Tiejun Zhao; Mika Yoshida; Paola Miyazato; Ken Takai; Kei Shimizu; Koichi Ohshima; Patrick L. Green; Naganari Ohkura; Tomoyuki Yamaguchi; Masahiro Ono; Shimon Sakaguchi; Masao Matsuoka

Human T-cell leukemia virus type 1 (HTLV-1) is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL), and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (Treg). Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for Treg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ), which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ Treg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased Treg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ Treg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of Treg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases.


Immunity | 2009

Indispensable Role of the Runx1-Cbfβ Transcription Complex for In Vivo-Suppressive Function of FoxP3+ Regulatory T Cells

Akihiko Kitoh; Masahiro Ono; Yoshinori Naoe; Naganari Ohkura; Tomoyuki Yamaguchi; Hiroko Yaguchi; Issay Kitabayashi; Toshihiko Tsukada; Takashi Nomura; Yoshiki Miyachi; Ichiro Taniuchi; Shimon Sakaguchi

Naturally arising regulatory T (Treg) cells express the transcription factor FoxP3, which critically controls the development and function of Treg cells. FoxP3 interacts with another transcription factor Runx1 (also known as AML1). Here, we showed that Treg cell-specific deficiency of Cbfbeta, a cofactor for all Runx proteins, or that of Runx1, but not Runx3, induced lymphoproliferation, autoimmune disease, and hyperproduction of IgE. Cbfb-deleted Treg cells exhibited impaired suppressive function in vitro and in vivo, with altered gene expression profiles including attenuated expression of FoxP3 and high expression of interleukin-4. The Runx complex bound to more than 3000 gene loci in Treg cells, including the Foxp3 regulatory regions and the Il4 silencer. In addition, knockdown of RUNX1 showed that RUNX1 is required for the optimal regulation of FoxP3 expression in human T cells. Taken together, our results indicate that the Runx1-Cbfbeta heterodimer is indispensable for in vivo Treg cell function, in particular, suppressive activity and optimal expression of FoxP3.


Seminars in Immunology | 2011

Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions.

Tomoyuki Yamaguchi; James B. Wing; Shimon Sakaguchi

Foxp3-expressing regulatory T cells (Tregs) play a crucial role in maintaining immune tolerance and homeostasis. One of the key issues for understanding Treg immunobiology is to determine how they suppress excessive or aberrant immune responses. Although a number of molecules have been reported to contribute to Treg suppressive function, the importance and precise role of each molecule is not clear. In this review, we propose and discuss that two modes of suppression can be distinguished. In the physiological and steady state, activation of naïve T cells can be suppressed by natural Tregs via deprivation of activation signals including CD28 signal and IL-2 from antigen-reactive T cells, keeping the latter in a naïve state in lymphoid tissues. These deprivation mechanisms are transiently abrogated in inflammatory conditions, allowing T cells to respond to antigen. In contrast, in highly inflammatory environments, for example, in microbial infection, activated Tregs acquire the capacity to kill or inactivate effector T cells and antigen-presenting cells, for example, via granzyme/perforin formation and IL-10 secretion, thereby actively damping excessive immune responses. Understanding these processes will help effectively controlling physiological and pathological immune responses via Tregs.


Trends in Immunology | 2011

Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation

Kajsa Wing; Tomoyuki Yamaguchi; Shimon Sakaguchi

It is controversial how cytotoxic T lymphocyte antigen (CTLA)-4, a co-inhibitory molecule, contributes to immunological tolerance and negative control of immune responses. Its role as an inducer of cell-intrinsic negative signals to activated effector T cells is well documented. However, there is accumulating evidence that CTLA-4 is essential for the function of naturally occurring Foxp3(+) regulatory T (Treg) cells, which constitutively express the molecule. CTLA-4 deficiency in Foxp3(+) Treg cells indeed impairs their in vivo and in vitro suppressive function. Further, Treg cells can modulate the function of CD80- and CD86-expressing antigen-presenting cells via CTLA-4. Here we discuss how CTLA-4 expression by one T cell can influence the activation of another in a cell non-autonomous fashion and thus control immune responses.

Collaboration


Dive into the Tomoyuki Yamaguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiro Ono

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge