Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ton N. M. Schumacher is active.

Publication


Featured researches published by Ton N. M. Schumacher.


Science | 2015

Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer

Naiyer A. Rizvi; Matthew D. Hellmann; Alexandra Snyder; Pia Kvistborg; Vladimir Makarov; Jonathan J. Havel; William R. Lee; Jianda Yuan; Phillip Wong; Teresa S. Ho; Martin L. Miller; Natasha Rekhtman; Andre L. Moreira; Fawzia Ibrahim; Cameron Bruggeman; Billel Gasmi; Roberta Zappasodi; Yuka Maeda; Chris Sander; Edward B. Garon; Taha Merghoub; Jedd D. Wolchok; Ton N. M. Schumacher; Timothy A. Chan

Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy. An anticancer drug is more effective against tumors that carry more mutations. More mutations predict better efficacy Despite the remarkable success of cancer immunotherapies, many patients do not respond to treatment. Rizvi et al. studied the tumors of patients with non–small-cell lung cancer undergoing immunotherapy. In two independent cohorts, treatment efficacy was associated with a higher number of mutations in the tumors. In one patient, a tumor-specific T cell response paralleled tumor regression. Science, this issue p. 124


Science | 2015

Neoantigens in cancer immunotherapy.

Ton N. M. Schumacher; Robert D. Schreiber

The clinical relevance of T cells in the control of a diverse set of human cancers is now beyond doubt. However, the nature of the antigens that allow the immune system to distinguish cancer cells from noncancer cells has long remained obscure. Recent technological innovations have made it possible to dissect the immune response to patient-specific neoantigens that arise as a consequence of tumor-specific mutations, and emerging data suggest that recognition of such neoantigens is a major factor in the activity of clinical immunotherapies. These observations indicate that neoantigen load may form a biomarker in cancer immunotherapy and provide an incentive for the development of novel therapeutic approaches that selectively enhance T cell reactivity against this class of antigens.


Nature | 2014

Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

Matthew M. Gubin; Xiuli Zhang; Heiko Schuster; Etienne Caron; Jeffrey P. Ward; Takuro Noguchi; Yulia Ivanova; Jasreet Hundal; Cora D. Arthur; Willem Jan Krebber; Gwenn E. Mulder; Mireille Toebes; Matthew D. Vesely; Samuel S.K. Lam; Alan J. Korman; James P. Allison; Gordon J. Freeman; Arlene H. Sharpe; Erika L. Pearce; Ton N. M. Schumacher; Ruedi Aebersold; Hans-Georg Rammensee; Cornelis J. M. Melief; Elaine R. Mardis; William E. Gillanders; Maxim N. Artyomov; Robert D. Schreiber

The immune system influences the fate of developing cancers by not only functioning as a tumour promoter that facilitates cellular transformation, promotes tumour growth and sculpts tumour cell immunogenicity, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion. Yet, clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer-induced immunosuppression. In many individuals, immunosuppression is mediated by cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), two immunomodulatory receptors expressed on T cells. Monoclonal-antibody-based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Here we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T-cell rejection antigens following anti-PD-1 and/or anti-CTLA-4 therapy of mice bearing progressively growing sarcomas, and we show that therapeutic synthetic long-peptide vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Although mutant tumour-antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with anti-PD-1 and/or anti-CTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles, rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens are not only important targets of checkpoint blockade therapy, but they can also be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments.


The New England Journal of Medicine | 2016

Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma

Jesse M. Zaretsky; Angel Garcia-Diaz; Daniel S. Shin; Helena Escuin-Ordinas; Willy Hugo; Siwen Hu-Lieskovan; Davis Y. Torrejon; Gabriel Abril-Rodriguez; Salemiz Sandoval; Lucas Barthly; Justin Saco; Blanca Homet Moreno; Riccardo Mezzadra; Bartosz Chmielowski; Kathleen Ruchalski; I. Peter Shintaku; Phillip J. Sanchez; Cristina Puig-Saus; Grace Cherry; Elizabeth Seja; Xiangju Kong; Jia Pang; Beata Berent-Maoz; Begoña Comin-Anduix; Thomas G. Graeber; Paul C. Tumeh; Ton N. M. Schumacher; Roger S. Lo; Antoni Ribas

BACKGROUND Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).


Nature Immunology | 2000

CD27 is required for generation and long-term maintenance of T cell immunity

Jenny Hendriks; Loes A. Gravestein; Kiki Tesselaar; René A. W. van Lier; Ton N. M. Schumacher; Jannie Borst

The Traf-linked tumor necrosis factor receptor family member CD27 is known as a T cell costimulatory molecule. We generated CD27−/− mice and found that CD27 makes essential contributions to mature CD4+ and CD8+ T cell function: CD27 supported antigen-specific expansion (but not effector cell maturation) of naïve T cells, independent of the cell cycle–promoting activities of CD28 and interleukin 2. Primary CD4+ and CD8+ T cell responses to influenza virus were impaired in CD27−/− mice. Effects of deleting the gene encoding CD27 were most profound on T cell memory, reflected by delayed response kinetics and reduction of CD8+ virus-specific T cell numbers to the level seen in the primary response. This demonstrates the requirement for a costimulatory receptor in the generation of T cell memory.


Journal of Clinical Oncology | 2013

Tumor Exome Analysis Reveals Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive Melanoma

Nienke van Rooij; Marit M. van Buuren; Daisy Philips; Arno Velds; Mireille Toebes; Bianca Heemskerk; Laura van Dijk; Sam Behjati; Henk Hilkmann; Dris El Atmioui; Marja Nieuwland; Michael R. Stratton; Ron M. Kerkhoven; Can Keşmir; John B. A. G. Haanen; Pia Kvistborg; Ton N. M. Schumacher

The evidence for T-cell–mediated regression of human cancers such as non–small-cell lung carcinoma, renal cell carcinoma, and—in particular—melanoma after immunotherapy is strong. Anti-CTLA4 (ipilimumab) treatment has been approved for treatment of meta-static melanoma,1 and antibody-mediated blockade of PD-1, a second inhibitory receptor on T cells, has shown highly encouraging results in early clinical trials.2,3 Although the clinical activity of these treatments is apparent, it is still unknown which T-cell reactivities are involved in immunotherapy-induced cancer regression.4 T-cell reactivity against nonmutated tumor-associated self-antigens has been analyzed in patients treated with ipilimumab or with autologous tumor-infiltrating T cells, but the magnitude of the T-cell responses observed has been relatively modest.5,6 In part on the basis of such data, recognition of patient-specific mutant epitopes (hereafter referred to as neoantigens) has been suggested to be a potentially important component.7 A potential involvement of mutated epitopes in T-cell control would also fit well with the observation that the mutation load in sun-exposed melanomas is particularly high.8-10 Intriguingly, on the basis of animal model data, it has recently been suggested that (therapy-induced) analysis of T-cell reactivity against patient-specific neoantigens may be feasible through exploitation of cancer genome data.11,12 However, human data have thus far been lacking. Here we report a case of a patient with stage IV melanoma who exhibited a clinical response to ipilimumab treatment. Cancer exome–guided analysis of T-cell reactivity in this patient revealed reactivity against two neoantigens, including a dominant T-cell response against a mutant epitope of the ATR (ataxia telangiectasia and Rad3 related) gene product that increased strongly after ipilimumab treatment. These data provide the first demonstration (to our knowledge) of cancer exome–guided analysis to dissect the effects of melanoma immunotherapy.


Cell | 1990

Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro

Ton N. M. Schumacher; Marie-Therese Heemels; Jacques Neefjes; W. Martin Kast; Cees Melief; Hidde L. Ploegh

MHC class I molecules devoid of peptide are expressed on the cell surface of the mouse mutant lymphoma cell line RMA-S upon culture at reduced temperature. Empty class I molecules are thermolabile at the cell surface and in detergent lysates, but can be stabilized by the addition of presentable peptide; peptide binding appears to be a rapid process. Furthermore, class I molecules on the surface of RMA-S (H-2b haplotype) cells cultured at 26 degrees C can efficiently and specifically bind iodinated peptide presented by H-2Kb. Binding of iodinated peptide is also observed at a lower level for nonmutant cells (RMA) cultured at 26 degrees C. These experiments underscore the role for peptide in maintenance of the structure of class I molecules and, more importantly, provide two assay systems to study the interactions of peptides with MHC class I molecules independent of the availability of T cells that recognize a particular peptide-MHC class I complex.


Nature Medicine | 2015

High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4 + T cells in human melanoma

Carsten Linnemann; Marit M. van Buuren; Laura Bies; Els M. E. Verdegaal; Remko Schotte; Jorg J A Calis; Sam Behjati; Arno Velds; Henk Hilkmann; Dris El Atmioui; Marten Visser; Michael R. Stratton; John B. A. G. Haanen; Hergen Spits; Sjoerd H. van der Burg; Ton N. M. Schumacher

Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen–specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen–specific CD4+ T-cell reactivity is a common property in human melanoma.


Nature Medicine | 2002

In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens.

Anne M. Dickinson; Xiao-Nong Wang; Lisbet Sviland; Florry A. Vyth-Dreese; Graham Jackson; Ton N. M. Schumacher; John B. A. G. Haanen; Tuna Mutis; Els Goulmy

Minor histocompatibility antigens (mHags) are immunogenic peptides from polymorphic cellular proteins that induce strong T-cell responses after human leukocyte antigen (HLA)-matched, mHag-mismatched stem-cell transplantation. mHags with broad or limited tissue expression are target antigens for graft-versus-host (GvH) and graft-versus-leukemia (GvL) reactivities. Separation of these activities is crucial for adoptive immunotherapy of leukemia without GvH disease. Therefore, using a skin-explant assay we investigated the in situ activities of cytotoxic T lymphocytes (CTLs) specific for the ubiquitously expressed mHag H-Y and for the hematopoietic-restricted mHags HA-1 and HA-2. H-Y-specific CTLs, visualized by tetrameric HLA–mHag peptide complexes, infiltrated male skin sections within 24 hours, induced severe GvH reactions of grade III–IV and produced high levels of IFN-γ. In contrast, CTLs specific for the hematopoietic system–specific mHags HA-1 and HA-2 induced no or low GvH reactions above background and produced little or no interferon-γ, unless the skin sections were preincubated with HA-1/HA-2 synthetic peptides. These results provide the first in situ dissection of GvH effects by mHag-specific CTLs and show that ubiquitously expressed mHags are the prime targets of GvH disease.


Nature Immunology | 2001

Immunotherapy through TCR gene transfer.

Helmut W. H. G. Kessels; Monika C. Wolkers; Marly D. van den Boom; Martin A. van den Valk; Ton N. M. Schumacher

The antigen specificity of T lymphocytes is dictated solely by the T cell receptor (TCR) α and β chains. Consequently, genetic transfer of TCR chains may be an appealing strategy with which to impose a desirable virus- or tumor-antigen specificity onto cytotoxic or helper T cell populations. We describe here the genetic introduction of a virus-specific TCR into peripheral T cells in a mouse model system. These experiments showed that T cells redirected by TCR gene transfer expanded upon viral infection of mice and efficiently homed to effector sites. In this setting, TCR gene transfer was not associated with any significant autoimmune pathology. In addition, small numbers of TCR-transduced T cells promoted the rejection of antigen-expressing tumors in vivo. These data suggest that the redirection of T cells by TCR gene transfer is a viable strategy for the rapid induction of virus- or tumor-specific immunity.

Collaboration


Dive into the Ton N. M. Schumacher's collaboration.

Top Co-Authors

Avatar

John B. A. G. Haanen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Mireille Toebes

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Christian U. Blank

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Pia Kvistborg

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sine Reker Hadrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Carsten Linnemann

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marit M. van Buuren

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Annelies Jorritsma

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Carmen Gerlach

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Huib Ovaa

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge