Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tong-peng Xu is active.

Publication


Featured researches published by Tong-peng Xu.


Tumor Biology | 2014

Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer

Ming Sun; Rui Xia; Feiyan Jin; Tong-peng Xu; Zhi-jun Liu; Wei De; Xiang-hua Liu

Long noncoding RNAs (lncRNAs) have emerged recently as major players in governing fundamental biological processes, and many of which are altered in expression and likely to have a functional role in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA associated with various human cancers. However, its biological role and clinical significance in gastric cancer development and progression are unknown. In this study, to investigate the lncRNA MEG3 expression in gastric cancer, quantitative reverse-transcription polymerase chain reaction was conducted. We found that MEG3 levels were markedly decreased in gastric cancer tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, depth of invasion, and tumor size. Moreover, patients with low levels of MEG3 expression had a relatively poor prognosis. Furthermore, knockdown of MEG3 expression by siRNA could promote cell proliferation, while ectopic expression of MEG3 inhibited cell proliferation, promoted cell apoptosis, and modulated p53 expression in gastric cancer cell lines. By 5-aza-CdR treatment, we also observed that MEG3 expression can be modulated by DNA methylation. Our findings present that MEG3 downexpression can be identified as a poor prognostic biomarker in gastric cancer and regulate cell proliferation and apoptosis in vitro.


BMC Cancer | 2014

Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer

Ming Sun; Feiyan Jin; Rui Xia; Rong Kong; Jin-hai Li; Tong-peng Xu; Yan-wen Liu; Erbao Zhang; Xiang-hua Liu; Wei De

BackgroundGastric cancer is the second leading cause of cancer death and remains a major clinical challenge due to poor prognosis and limited treatment options. Long noncoding RNAs (lncRNAs) have emerged recently as major players in tumor biology and may be used for cancer diagnosis, prognosis, and potential therapeutic targets. Although downregulation of lncRNA GAS5 (Growth Arrest-Specific Transcript) in several cancers has been studied, its role in gastric cancer remains unknown. Our studies were designed to investigate the expression, biological role and clinical significance of GAS5 in gastric cancer.MethodsExpression of GAS5 was analyzed in 89 gastric cancer tissues and five gastric cancer cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Over-expression and RNA interference (RNAi) approaches were used to investigate the biological functions of GAS5. The effect of GAS5 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by hochest stainning. Gastric cancer cells transfected with pCDNA3.1 -GAS5 were injected into nude mice to study the effect of GAS5 on tumorigenesis in vivo. Protein levels of GAS5 targets were determined by western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed).ResultsWe found that GAS5 expression was markedly downregulated in gastric cancer tissues, and associated with larger tumor size and advanced pathologic stage. Patients with low GAS5 expression level had poorer disease-free survival (DFS; P = 0.001) and overall survival (OS; P < 0.001) than those with high GAS5 expression. Further multivariable Cox regression analysis suggested that decreased GAS5 was an independent prognostic indicator for this disease (P = 0.006, HR = 0.412; 95%CI = 2.218–0.766). Moreover, ectopic expression of GAS5 was demonstrated to decrease gastric cancer cell proliferation and induce apoptosis in vitro and in vivo, while downregulation of endogenous GAS5 could promote cell proliferation. Finally, we found that GAS5 could influence gastric cancer cells proliferation, partly via regulating E2F1 and P21 expression.ConclusionOur study presents that GAS5 is significantly downregulated in gastric cancer tissues and may represent a new marker of poor prognosis and a potential therapeutic target for gastric cancer intervention.


Molecular Cancer | 2015

Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16

Rong Kong; Erbao Zhang; Dandan Yin; Liang-hui You; Tong-peng Xu; Wen-ming Chen; Rui Xia; Li Wan; Ming Sun; Zhaoxia Wang; Wei De; Zhihong Zhang

BackgroundMounting evidence indicates that long noncoding RNAs (lncRNAs) could play a pivotal role in cancer biology. However, the overall biological role and clinical significance of PVT1 in gastric carcinogenesis remains largely unknown.MethodsExpression of PVT1 was analyzed in 80 GC tissues and cell lines by qRT-PCR. The effect of PVT1 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Flow-cytometric analysis. GC cells transfected with shPVT1 were injected into nude mice to study the effect of PVT1 on tumorigenesis in vivo. RIP was performed to confirm the interaction between PVT1 and EZH2. ChIP was used to study the promoter region of related genes.ResultsThe higher expression of PVT1 was significantly correlated with deeper invasion depth and advanced TNM stage. Multivariate analyses revealed that PVT1 expression served as an independent predictor for overall survival (p = 0.031). Further experiments demonstrated that PVT1 knockdown significantly inhibited the proliferation both in vitro and in vivo. Importantly, we also showed that PVT1 played a key role in G1 arrest. Moreover, we further confirmed that PVT1 was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of p15 and p16. To our knowledge, this is the first report showed that the role and the mechanism of PVT1 in the progression of gastric cancer.ConclusionsTogether, these results suggest that lncRNA PVT1 may serve as a candidate prognostic biomarker and target for new therapies in human gastric cancer.


Molecular Cancer | 2014

Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition

Ming Sun; Xiang-hua Liu; Keming Wang; Fengqi Nie; Rong Kong; Jinsong Yang; Rui Xia; Tong-peng Xu; Feiyan Jin; Zhi-jun Liu; Jinfei Chen; Erbao Zhang; Wei De; Zhaoxia Wang

BackgroundRecent evidence indicates that long noncoding RNAs (lncRNAs) play a critical role in the regulation of cellular processes, such as differentiation, proliferation and metastasis. These lncRNAs are found to be dysregulated in a variety of cancers. BRAF activated non-coding RNA (BANCR) is a 693-bp transcript on chromosome 9 with a potential functional role in melanoma cell migration. The clinical significance of BANCR, and its’ molecular mechanisms controlling cancer cell migration and metastasis are unclear.MethodsExpression of BANCR was analyzed in 113 non-small cell lung cancer (NSCLC) tissues and seven NSCLC cell lines using quantitative polymerase chain reaction (qPCR) assays. Gain and loss of function approaches were used to investigate the biological role of BANCR in NSCLC cells. The effects of BANCR on cell viability were evaluated by MTT and colony formation assays. Apoptosis was evaluated by Hoechst staining and flow cytometry. Nude mice were used to examine the effects of BANCR on tumor cell metastasis in vivo. Protein levels of BANCR targets were determined by western blotting and fluorescent immunohistochemistry.ResultsBANCR expression was significantly decreased in 113 NSCLC tumor tissues compared with normal tissues. Additionally, reduced BANCR expression was associated with larger tumor size, advanced pathological stage, metastasis distance, and shorter overall survival of NSCLC patients. Reduced BANCR expression was found to be an independent prognostic factor for NSCLC. Histone deacetylation was involved in the downregulation of BANCR in NSCLC cells. Ectopic expression of BANCR impaired cell viability and invasion, leading to the inhibition of metastasis in vitro and in vivo. However, knockdown of BANCR expression promoted cell migration and invasion in vitro. Overexpression of BANCR was found to play a key role in epithelial-mesenchymal transition (EMT) through the regulation of E-cadherin, N-cadherin and Vimentin expression.ConclusionWe determined that BANCR actively functions as a regulator of EMT during NSCLC metastasis, suggesting that BANCR could be a biomarker for poor prognosis of NSCLC.


Journal of Hematology & Oncology | 2014

Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression

Tong-peng Xu; Ming-de Huang; Rui Xia; Xin-xin Liu; Ming Sun; Li Yin; Wen-ming Chen; Liang Han; Erbao Zhang; Rong Kong; Wei De; Yongqian Shu

BackgroundFENDRR is a long non-coding RNAs (lncRNA) that binds to polycomb repressive complexe 2 (PRC2) to epigenetically regulate the expression of its target gene. The clinical role of FENDRR in carcinomas remains yet to be found.MethodReal-time polymerase chain reaction (PCR) was used to examine FENDRR expression in gastric cancer cell lines/tissues compared with normal epithelial cells/adjacent non-tumorous tissues. Cell proliferation assays, Wound healing assays, and in vitro and in vivo invasion and migration assays were performed to detect the biological effects of FENDRR in gastric cancer cells. Real-time PCR, western-blot and immunohistochemistry were used to evaluate the mRNA and protein expression of fibronectin1 (FN1). Secreted matrix metalloproteinase (MMP) activities were detected and characterized using gelatin zymography assay.ResultsFENDRR was downregulated in gastric cancer cell lines and cancerous tissues, as compared with normal gastric epithelial cells and adjacent noncancerous tissue samples. Low FENDRR expression was correlated with deeper tumor invasion (p < 0.001), higher tumor stage (p = 0.001), and lymphatic metastasis (p = 0.007). Univariate and multivariate analyses indicated that low FENDRR expression predicted poor prognosis. Histone deacetylation was involved in the downregulation of FENDRR in gastric cancer cells. FENDER overexpression suppressed invasion and migration by gastric cancer cells in vitro, by downregulating FN1 and MMP2/MMP9 expression.ConclusionLow expression of the lncRNA FENDRR occurs in gastric cancer and is associated with poor prognosis. Thus, FENDRR plays an important role in the progression and metastasis of gastric cancer.


Molecular Cancer Therapeutics | 2016

Long Noncoding RNA PVT1 Promotes Non–Small Cell Lung Cancer Cell Proliferation through Epigenetically Regulating LATS2 Expression

Li Wan; Ming Sun; Guojian Liu; Chenchen Wei; Erbao Zhang; Rong Kong; Tong-peng Xu; Ming-de Huang; Zhaoxia Wang

Long noncoding RNAs (lncRNA) are a novel class of transcripts with no protein coding capacity, but with diverse functions in cancer cell proliferation, apoptosis, and metastasis. The lncRNA PVT1 is 1,716 nt in length and located in the chr8q24.21 region, which also contains the myelocytomatosis (MYC) oncogene. Previous studies demonstrated that MYC promotes PVT1 expression in primary human cancers. However, the expression pattern and potential biologic function of PVT1 in non–small cell lung cancer (NSCLC) is still unclear. Here, we found that PVT1 was upregulated in 105 human NSCLC tissues compared with normal samples. High expression of PVT1 was associated with a higher tumor–node–metastasis stage and tumor size, as well as poorer overall survival. Functional analysis revealed that knockdown of PVT1 inhibited NSCLC cell proliferation and induced apoptosis both in vitro and in vivo. RNA immunoprecipitation and chromatin immunoprecipitation assays demonstrated that PVT1 recruits EZH2 to the large tumor suppressor kinase 2 (LATS2) promoter and represses LATS2 transcription. Furthermore, ectopic expression of LATS2 increased apoptosis and repressed lung adenocarcinoma cell proliferation by regulating the Mdm2-p53 pathway. Taken together, our findings indicated that PVT1/EZH2/LATS2 interactions might serve as new target for lung adenocarcinoma diagnosis and therapy. Mol Cancer Ther; 15(5); 1082–94. ©2016 AACR.


Molecular Cancer | 2015

Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2

Ming-de Huang; Wen-ming Chen; Fu-zhen Qi; Ming Sun; Tong-peng Xu; Pei Ma; Yongqian Shu

BackgroundHepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and the biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in a variety of cancers, including HCC. Taurine Up-regulated Gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is found to be disregulated in non-small cell lung carcinoma (NSCLC) and esophageal squamous cell carcinoma (ESCC). However, its clinical significance and potential role in HCC remain unclear.Methods and resultsIn this study, expression of TUG1 was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qPCR). TUG1 expression was up-regulated in HCC tissues and the higher expression of TUG1 was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, silencing of TUG1 expression inhibited HCC cell proliferation, colony formation, tumorigenicity and induced apoptosis in HCC cell lines. We also found that TUG1 overexpression was induced by nuclear transcription factor SP1 and TUG1 could epigeneticly repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to KLF2 promoter region.ConclusionOur results suggest that lncRNA TUG1, as a growth regulator, may serve as a new diagnostic biomarker and therapy target for HCC.


Journal of Hematology & Oncology | 2015

Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell apoptosis by epigenetic silencing of KLF2

Ming-de Huang; Wen-ming Chen; Fu-zhen Qi; Rui-Long Xia; Ming Sun; Tong-peng Xu; Li Yin; Erbao Zhang; Wei De; Yongqian Shu

Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, especially in China. And the mechanism of its progression remains poorly understood. Growing evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in many cancers, including HCC. ANRIL, a lncRNA co-clustered mainly with p14/ARF has been reported to be dysregulated in gastric cancer, esophageal squamous cell carcinoma, and lung cancer. However, its clinical significance and potential role in HCC are still not documented. Methods and results In this study, expression of ANRIL was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qRT-PCR). ANRIL expression was upregulated in HCC tissues, and the higher expression of ANRIL was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, taking advantage of loss-of-function experiments in HCC cells, we found that knockdown of ANRIL expression could impair cell proliferation and invasion and induce cell apoptosis both in vitro and in vivo. We also found that ANRIL could epigenetically repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to the KLF2 promoter region. We also found that SP1 could regulate the expression of ANRIL. Conclusion Our results suggest that lncRNA ANRIL, as a growth regulator, may serve as a new biomarker and target for therapy in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0146-0) contains supplementary material, which is available to authorized users.BackgroundHepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, especially in China. And the mechanism of its progression remains poorly understood. Growing evidence indicates that long non-coding RNAs (lncRNAs) are found to be dysregulated in many cancers, including HCC. ANRIL, a lncRNA co-clustered mainly with p14/ARF has been reported to be dysregulated in gastric cancer, esophageal squamous cell carcinoma, and lung cancer. However, its clinical significance and potential role in HCC are still not documented.Methods and resultsIn this study, expression of ANRIL was analyzed in 77 HCC tissues and matched normal tissues by using quantitative polymerase chain reaction (qRT-PCR). ANRIL expression was upregulated in HCC tissues, and the higher expression of ANRIL was significantly correlated with tumor size and Barcelona Clinic Liver Cancer (BCLC) stage. Moreover, taking advantage of loss-of-function experiments in HCC cells, we found that knockdown of ANRIL expression could impair cell proliferation and invasion and induce cell apoptosis both in vitro and in vivo. We also found that ANRIL could epigenetically repress Kruppel-like factor 2 (KLF2) transcription in HCC cells by binding with PRC2 and recruiting it to the KLF2 promoter region. We also found that SP1 could regulate the expression of ANRIL.ConclusionOur results suggest that lncRNA ANRIL, as a growth regulator, may serve as a new biomarker and target for therapy in HCC.


Oncotarget | 2016

Long intergenic non-coding RNA 00152 promotes tumor cell cycle progression by binding to EZH2 and repressing p15 and p21 in gastric cancer.

Wen-ming Chen; Ming-de Huang; Dao-ping Sun; Rong Kong; Tong-peng Xu; Rui Xia; Erbao Zhang; Yongqian Shu

Long noncoding RNAs (lncRNAs) play important regulatory roles in several human cancers. Integrated analysis revealed that expression of long intergenic non-coding RNA 152 (LINC00152) was significantly upregulated in gastric cancer (GC). Further analysis in a cohort of 97 GC patients revealed that LINC00152 expression was positively correlated with tumor invasion depth, lymph node metastasis, higher TNM stage, and poor survival. Gene set enrichment analysis revealed that cell proliferation and cell cycle progression were increased in patients with high LINC00152 expression. In both GC cell lines and xenograft systems, LINC00152 overexpression facilitated GC cell proliferation by accelerating the cell cycle, whereas LINC00152 knockdown had the opposite effect. Moreover, by binding to enhancer of zeste homolog 2 (EZH2), LINC00152 promotes GC tumor cell cycle progression by silencing the expression of p15 and p21. These findings suggest that LINC00152 may play contribute to the progression of GC and may be an effective therapeutic target.


Tumor Biology | 2014

Long non-coding RNA MVIH indicates a poor prognosis for non-small cell lung cancer and promotes cell proliferation and invasion.

Fengqi Nie; Quan Zhu; Tong-peng Xu; Yanfen Zou; Min Xie; Ming Sun; Rui Xia; Kaihua Lu

Long non-coding RNAs (lncRNAs) have emerged as major players in governing fundamental biological processes, and many of which are misregulated in multiple cancers and likely to play a functional role in tumorigenesis. Therefore, identification of cancer-associated lncRNAs and investigation of their biological functions and molecular mechanisms are important for understanding the development and progression of cancer. lncRNA associated with microvascular invasion in HCC (lncRNA MVIH) was found to be generally upregulated in HCC. Moreover, MVIH overexpression could serve as an independent risk factor to predict poor RFS and promote tumor growth and metastasis via activating angiogenesis. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression is unknown. In this study, we found that lncRNA MVIH levels were increased in NSCLC tissues compared with adjacent normal tissues. Its expression level was significantly correlated with TNM stages, tumor size, and lymph node metastasis. Moreover, patients with high levels of MVIH expression had a relatively poor prognosis. Furthermore, knockdown of MVIH expression by siRNA could inhibit cell proliferation and invasion, while ectopic expression of MVIH promoted cell proliferation and invasion in NSCLC cells partly via regulating MMP2 and MMP9 protein expression. Our findings present that increased lncRNA MVIH could be identified as a poor prognostic biomarker in NSCLC and regulate cell proliferation and invasion.

Collaboration


Dive into the Tong-peng Xu's collaboration.

Top Co-Authors

Avatar

Erbao Zhang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ming Sun

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Rui Xia

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei De

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Rong Kong

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Wen-ming Chen

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Yongqian Shu

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Ming-de Huang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Feiyan Jin

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiang-hua Liu

Nanjing Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge