Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tongbin Zhu is active.

Publication


Featured researches published by Tongbin Zhu.


Scientific Reports | 2013

Mechanisms for the retention of inorganic N in acidic forest soils of southern China

Jinbo Zhang; Zucong Cai; Tongbin Zhu; Wenyan Yang; Christoph Müller

The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much greater capacity for retaining inorganic N than northern soils. The rates of autotrophic nitrification and NH3 volatilization in acidic southern soils were significantly lower due to low soil pH. Meanwhile, the relatively higher rates of NO3− immobilization into organic N in southern soils can counteract the effects of leaching, runoff, and denitrification. Taken together, these processes are responsible for the N enrichment of the humid subtropical forest soils in southern China.


Environmental Research | 2011

N2O production pathways in the subtropical acid forest soils in China.

Jinbo Zhang; Zucong Cai; Tongbin Zhu

To date, N(2)O production pathways are poorly understood in the humid subtropical and tropical forest soils. A (15)N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N(2)O production in four subtropical acid forest soils (pH<4.5) in China. The results showed that denitrification was the main source of N(2)O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N(2)O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N(2)O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N(2)O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N(2)O product ratios from nitrification. The ratio of N(2)O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget.


Biology and Fertility of Soils | 2011

Heterotrophic nitrification is the predominant NO 3 − production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China

Jinbo Zhang; Christoph Müller; Tongbin Zhu; Yi Cheng; Zucong Cai

A study was carried out to investigate the potential gross nitrogen (N) transformations in natural secondary coniferous and evergreen broad-leaf forest soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a 15N tracing study. The results showed that N dynamics were dominated by NH4+ turnover in both soils. The total mineralization (from labile and recalcitrant organic N) in the broad-leaf forest was more than twice the rate in the coniferous forest soil. The total rate of mineral N production (NH4+ + NO3−) from the large recalcitrant organic N pool was similar in the two forest soils. However, appreciable NO3− production was only observed in the coniferous forest soil due to heterotrophic nitrification (i.e. direct oxidation of organic N to NO3−), whereas nitrification in broad-leaf forest was little (or negligible). Thus, a distinct shift occurred from predominantly NH4+ production in the broad-leaf forest soil to a balanced production of NH4+ and NO3− in the coniferous forest soil. This may be a mechanism to ensure an adequate supply of available mineral N in the coniferous forest soil and most likely reflects differences in microbial community patterns (possibly saprophytic, fungal, activities in coniferous soils). We show for the first time that the high nitrification rate in these soils may be of heterotrophic rather than autotrophic nature. Furthermore, high NO3− production was only apparent in the coniferous but not in broad-leaf forest soil. This highlights the association of vegetation type with the size and the activity of the SOM pools that ultimately determines whether only NH4+ or also a high NO3− turnover is present.


Global Biogeochemical Cycles | 2014

Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model

Zengming Chen; Weixin Ding; Yiqi Luo; Hongyan Yu; Yehong Xu; Christoph Müller; Xia Xu; Tongbin Zhu

Manure application is effective in promoting soil carbon sequestration, but its impact on N2O emission is not well understood. A field experiment was conducted in a maize-cultivated black soil in Northeast China with six treatments: inorganic fertilizer (NPK), 75% inorganic fertilizer N plus 25% pig (PM1) or chicken (CM1) manure N, 50% inorganic fertilizer N plus 50% pig (PM2) or chicken (CM2) manure N, and no N fertilizer (CK). Annual N2O emission significantly increased from 0.34 kg N ha−1 for CK to 0.86 kg N ha−1 for NPK and further to 1.65, 1.02, 1.17, and 0.93 kg N ha−1 for PM1, CM1, PM2, and CM2, respectively. A 15N tracing study showed that 71–79% of total N2O was related to nitrification at 30–70% water-filled pore space (WFPS), and heterotrophic nitrification contributed 49% and 25% to total N2O at 30% and 70% WFPS, respectively. In an incubation, N2O emission was only stimulated when nitrate and glucose were applied together at 60% WFPS, indicating that denitrification was carbon limited. PM had a stronger effect on denitrification than CM due to higher decomposability, and the lower N2O emission at higher manure application rate was associated with decreased mineral N supply. After compiling a worldwide database and establishing an empirical model that related N2O emissions (kg N ha−1) to precipitation (Pr, m) and fertilizer N application rate (Nr, kg N ha−1) (N2O = 1.533Pr + 0.0238PrNr), annual N2O emission from global-cultivated black soil applied with inorganic fertilizer N was estimated as 347 Gg N. Our results suggested that N2O emission from cultivated black soils in China was low primarily due to low precipitation and labile organic carbon availability, and would be stimulated by manure application; thus, increased N2O emission should be taken into consideration as applying manure increases soil organic carbon sequestration.


Biocontrol | 2015

Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense

Xinqi Huang; Teng Wen; Jinbo Zhang; Lei Meng; Tongbin Zhu; Zucong Cai

Biological soil disinfestation (BSD) is an effective and environmentally friendly way to suppress soil-borne pathogens. Although it is increasingly used in USA, the Netherlands and Japan, its precise mechanism has not been well quantified so far. Quantitative real-time PCR, denaturing gradient gel electrophoresis and high performance liquid chromatography were used for investigating the role of organic acids in the mechanisms of BSD. The results showed that BSD significantly reduced the population of Fusarium oxysporum in soil. Simultaneously, in BSD treatments, the soil pH significantly decreased and some organic acid producers, such as Clostridia sp., were observed. Four kinds of toxic organic acids to F. oxysporum were detected in soil solutions of BSD treatments. Acetic acid and butyric acid were the primary organic acids, followed by small amounts of isovaleric acid and propionic acid. The verification test directly demonstrated that the toxic organic acids with the maximal doses detected in BSD significantly suppressed F. oxysporum, Rhizoctonia solani and Ralstonia solanacearum.


Journal of Geophysical Research | 2014

The mechanisms governing low denitrification capacity and high nitrogen oxide gas emissions in subtropical forest soils in China

Jinbo Zhang; Yongjie Yu; Tongbin Zhu; Zucong Cai

Previous studies have demonstrated that denitrification rates are low in subtropical forest soils. However, the mechanisms governing this process are not well known. This study seeks to identify the mechanisms responsible for the low denitrification capacity and high nitrogen oxide gas ratio in subtropical forest soils in China. The denitrification capacity and nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) emission rates were measured using the acetylene inhibition method under conditions of added nitrate and anoxia. The abundance of nitrate reductase (narG), nitrite reductase (nirK), nitric oxide reductase (cnorB), and nitrous oxide reductase (nosZ) was measured using real-time, quantitative polymerase chain reaction, and sequencing of the nirK and norB products was performed to analyze the population structure of denitrifying bacteria. These results showed that the denitrification capacity in subtropical forest soils was lower than in temperate forest soils (p < 0.05). Multiple regression analysis showed that redox potential at the start of incubation (Ehi), rather than soil pH or soil organic C, was the key soil variable influencing denitrification, and Ehi alone could explain 68% of the variations in denitrification capacity. The high Ehi in subtropical soils led to a low abundance of nirK and significant differences in the population structure of denitrifying bacteria between subtropical and temperate soils. Therefore, Ehi was responsible for the low denitrification capacity in subtropical forest soils. The ratio of NO to total denitrification gas products (p < 0.01) and the ratio of NO and N2O to total denitrification gas products (p < 0.05) were significantly higher in subtropical forest soils than in temperate forest soils, while the reverse trend was observed for the ratio of N2 to total denitrification gas products (p < 0.05). A high Ehi reduced the specific reduction activity of each nosZ copy and, in turn, resulted in a large ratio of NO and N2O to total denitrification gas products in subtropical soils. Thus, NO and N2O, but not N2, were the dominant denitrification gas products, accounting for 80%, even under the highly anaerobic conditions in subtropical forest soils and despite low denitrification capacity. These results were significant for understanding the “Hole in the Pipe” model and NO and N2O gases emission in subtropical forest soils. Despite the fact that the nitrogen flowing through the pipe (denitrification capacity) was low, the large holes in the pipe resulted in a large quantity of NO and N2O gases leaking out. This leakage may be a potential mechanism for the high levels of NO and N2O gas emission in subtropical forest soils and could partly explain why NO and N2O emissions are generally high in subtropical and tropical soils.


Journal of Environmental Sciences-china | 2015

Effects of water regime, crop residues, and application rates on control of Fusarium oxysporum f. sp. cubense

Teng Wen; Xinqi Huang; Jinbo Zhang; Tongbin Zhu; Lei Meng; Zucong Cai

Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense (FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated (100% water holding capacity) conditions at 30°C for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential (down to -350 mV) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore, incorporating soil with straw (rice or maize straw) at a rate of 3.0 tons/ha under 100% water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30°C.


Journal of Environmental Sciences-china | 2015

Effect of orchard age on soil nitrogen transformation in subtropical China and implications

Yushu Zhang; Jinbo Zhang; Tongbin Zhu; Christoph Müller; Zucong Cai

A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a (15)N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil pH along with increasing orchard age significantly. The amoA gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity (defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis-Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3(-) consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3(-) loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age.


Acta Agriculturae Scandinavica Section B-soil and Plant Science | 2015

Cattle manure and straw have contrasting effects on organic nitrogen mineralization pathways in a subtropical paddy soil

Yushu Zhang; Fei Wang; Jinbo Zhang; Tongbin Zhu; Cheng Lin; Christoph Müller; Zucong Cai

Organic materials are widely recommended for the maintenance and/or accumulation of organic carbon and total nitrogen in agricultural soils. However, the relative effectiveness of different organic materials on gross N transformation and inorganic-N supply is not known. Here, a 15N tracing incubation study was conducted to investigate the rates of gross N mineralization, nitrification, and microbial immobilization of and in a paddy soil managed using different organic materials. Soil samples were collected from a rice field that has been under long-term study (30 years) and is receiving four different fertilizer treatments: no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus cattle manure (NPKM), and chemical fertilizer plus straw (NPKS). The samples were incubated with 15NH4NO3 or NH4 15NO3, and the results were calculated based on a 15N tracing model. The analysis showed that mineralization of labile and recalcitrant organic-N pools was significantly stimulated by NPKM and NPKS treatments, respectively, but not by NPK alone. Heterotrophic nitrification was negligible in all treatments. Therefore, the enhanced inorganic-N supply rates (total mineralization + heterotrophic nitrification) due to NPKM and NPKS application could be attributed to the increasing mineralization of the labile organic-N pool and recalcitrant organic-N pool, respectively. The rate of autotrophic nitrification rate was significantly increased by NPK and NPKM application, but not by NPKS application. However, both consumption rates (immobilization of and dissimilatory reduction to ) were low and unaffected by fertilizer application. Our results suggest that NPKM stimulated the processes of mineralization of the labile organic-N pool and autotrophic nitrification to increase accumulation in soil. In contrast, application of NPKS increased the rate of mineralization of recalcitrant organic-N pool but did not affect the autotrophic nitrification rate.


Journal of Environmental Sciences-china | 2015

Effect of liming on sulfate transformation and sulfur gas emissions in degraded vegetable soil treated by reductive soil disinfestation

Tianzhu Meng; Tongbin Zhu; Jinbo Zhang; Zucong Cai

Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO4(2-)) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO4(2-) transformation and S gas emissions, two SO4(2-)-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO4(2-) by 51% and 61% in S1 and S2, respectively. The disappeared SO4(2-) was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for <0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO4(2-) into undissolved form, reduced soil SO4(2-) by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO4(2-), liming stimulates the conversion of dissolved SO4(2-) into undissolved form, probably due to the precipitation with calcium.

Collaboration


Dive into the Tongbin Zhu's collaboration.

Top Co-Authors

Avatar

Jinbo Zhang

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Zucong Cai

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianzhu Meng

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Wenyan Yang

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weixin Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongjie Yu

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Hongyan Yu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge