Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tongren Xu is active.

Publication


Featured researches published by Tongren Xu.


Remote Sensing | 2015

Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration

Tongren Xu; Shaomin Liu; Lu Xu; Yujie Chen; Zhenzhen Jia; Ziwei Xu; Jeffrey Nielson

Currently, thermal remote sensing-based evapotranspiration (ET) models can only calculate instantaneous ET at the time of satellite overpass. Five temporal upscaling methods, namely, constant evaporative fraction (ConEF), corrected ConEF (CorEF), diurnal evaporative fraction (DiEF), constant solar radiation ratio (SolRad), and constant reference evaporative fraction (ConETrF), were selected to upscale the instantaneous ET to daily values. Moreover, five temporal reconstruction approaches, namely, data assimilation (ET_EnKF and ET_SCE_UA), surface resistance (ET_SR), reference evapotranspiration (ET_ETrF), and harmonic analysis of time series (ET_HANTS), were used to produce continuous daily ET with discrete clear-sky daily ET values. For clear-sky daily ET generation, SolRad and ConETrF produced the best estimates. In contrast, ConEF usually underestimated the daily ET. The optimum method, however, was found by combining SolRad and ConETrF, which produced the lowest root-mean-square error (RMSE) values. For continuous daily ET production, ET_ETrF and ET_SCE_UA performed the best, whereas the ET_SR and ET_HANTS methods had large errors. The annual ET distributions over the Beijing area were calculated with these methods. The spatial ET distributions from ET_ETrF and ET_SCE_UA had the same trend as ETWatch products, and had a smaller RMSE when compared with ET observations derived from the water balance method.


Journal of Geophysical Research | 2014

Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from Geostationary Operational Environmental Satellites

Tongren Xu; S. M. Bateni; Shunlin Liang; Dara Entekhabi; Kebiao Mao

Recently, a number of studies have focused on estimating surface turbulent heat fluxes via assimilation of sequences of land surface temperature (LST) observations into variational data assimilation (VDA) schemes. Using the full heat diffusion equation as a constraint, the surface energy balance equation can be solved via assimilation of sequences of LST within a VDA framework. However, the VDA methods have been tested only in limited field sites that span only a few climate and land use types. Hence, in this study, combined-source (CS) and dual-source (DS) VDA schemes are tested extensively over six FluxNet sites with different vegetation covers (grassland, cropland, and forest) and climate conditions. The CS model groups the soil and canopy together as a single source and does not consider their different contributions to the total turbulent heat fluxes, while the DS model considers them to be different sources. LST data retrieved from the Geostationary Operational Environmental Satellites are assimilated into these two VDA schemes. Sensible and latent heat flux estimates from the CS and DS models are compared with the corresponding measurements from flux tower stations. The results indicate that the performance of both models at dry, lightly vegetated sites is better than that at wet, densely vegetated sites. Additionally, the DS model outperforms the CS model at all sites, implying that the DS scheme is more reliable and can characterize the underlying physics of the problem better.


IEEE Geoscience and Remote Sensing Letters | 2015

Estimating Turbulent Heat Fluxes With a Weak-Constraint Data Assimilation Scheme: A Case Study (HiWATER-MUSOEXE)

Tongren Xu; S. Mohyeddin Bateni; Shunlin Liang

A weak-constraint variational data assimilation (WC-VDA) scheme was developed to estimate turbulent heat fluxes by assimilating sequences of land surface temperature measurements. In contrast to the commonly used strong-constraint VDA system, the WC-VDA approach accounts for the effects of structural and model errors and generates better results. This is achieved by adding a model error term (ω) to the surface energy balance equation. The WC-VDA model was tested at two sites with very distinct hydrological and vegetated conditions: the Daman site (a wet site located in an oasis area and covered by seeded corn) and the Huazhaizi site (a dry site located in a desert area and covered by sparse grass). The two sites represent typical desert-oasis landscapes in the middle reaches of the Heihe River Basin, northwestern China. The results proved that the WC-VDA method performed well over very dry and wet conditions, and the estimated sensible and latent heat fluxes agree well with eddy covariance measurements.


Remote Sensing | 2016

Quantification of the Scale Effect in Downscaling Remotely Sensed Land Surface Temperature

Ji Zhou; Shaomin Liu; Mingsong Li; Wenfeng Zhan; Ziwei Xu; Tongren Xu

Most current statistical models for downscaling the remotely sensed land surface temperature (LST) are based on the assumption of the scale-invariant LST-descriptors relationship, which is being debated and requires an in-depth examination. Additionally, research on downscaling LST to high or very high resolutions (~10 m) is still rare. Here, a simple analytical model was developed to quantify the scale effect in downscaling the LST from a medium resolution (~100 m) to high resolutions. The model was verified in the Zhangye oasis and Beijing city. Examinations of the simulation datasets that were generated based on airborne and space station LSTs demonstrate that the developed model can predict the scale effect in LST downscaling; the scale effect exists in both of these two study areas. The model was further applied to 12 ASTER images in the Zhangye oasis during a complete crop growing season and one Landsat-8 TIRS image in Beijing city in the summer. The results demonstrate that the scale effect is intrinsically caused by the varying probability distribution of the LST and its descriptors at the native and target resolutions. The scale effect depends on the values of the descriptors, the phenology, and the ratio of the native resolution to the target resolution. Removing the scale effect would not necessarily improve the accuracy of the downscaled LST.


Journal of Hydrometeorology | 2016

Partitioning Evapotranspiration into Soil Evaporation and Canopy Transpiration via a Two-Source Variational Data Assimilation System

Tongren Xu; Sayed M. Bateni; Steven A. Margulis; Lisheng Song; Shaomin Liu; Ziwei Xu

AbstractThe primary objective of this study is to assess the accuracy of the two-source variational data assimilation (TVDA) system for partitioning evapotranspiration (ET) into soil evaporation (ETS) and canopy transpiration (ETC). Its secondary aim is to compare performance of the TVDA system with the commonly used two-source surface energy balance (TSEB) method. A combination of eddy-covariance-based ET observations and stable-isotope-based measurements of the ratio of evaporation and transpiration to total evapotranspiration (ETS/ET and ETC/ET) over an irrigated cropland site (the so-called Daman site) in the middle reach of the Heihe River basin (northwestern China) was used to investigate these objectives. The results indicate that the TVDA method predicts ETS and ETC more accurately than TSEB. Root-mean-square errors (RMSEs) of midday (1300–1500 LT) averaged soil and canopy latent heat flux (LES and LEC) estimates from TVDA are 23.1 and 133.0 W m−2, respectively. Corresponding RMSE values from TSEB...


Science China-earth Sciences | 2015

A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature

Tongren Xu; Shaomin Liu; Ziwei Xu; Shunlin Liang; Lu Xu

In this work, a dual-pass data assimilation scheme is developed to improve predictions of surface flux. Pass 1 of the dual-pass data assimilation scheme optimizes the model vegetation parameters at the weekly temporal scale, and Pass 2 optimizes the soil moisture at the daily temporal scale. Based on ensemble Kalman filter (EnKF), the land surface temperature (LST) data derived from the new generation of Chinese meteorology satellite (FY3A-VIRR) are assimilated into common land model (CoLM) for the first time. Six sites, Daman, Guantao, Arou, BJ, Miyun and Jiyuan, are selected for the data assimilation experiments and include different climatological conditions. The results are compared with those from a dataset generated by a multi-scale surface flux observation system that includes an automatic weather station (AWS), eddy covariance (EC) and large aperture scintillometer (LAS). The results indicate that the dual-pass data assimilation scheme is able to reduce model uncertainties and improve predictions of surface flux with the assimilation of FY3A-VIRR LST data.


Journal of Hydrometeorology | 2017

Characterizing the Effect of Vegetation Dynamics on the Bulk Heat Transfer Coefficient to Improve Variational Estimation of Surface Turbulent Fluxes

Abedeh Abdolghafoorian; Leila Farhadi; Sayed M. Bateni; Steve Margulis; Tongren Xu

AbstractEstimation of turbulent heat fluxes by assimilating sequences of land surface temperature (LST) observations into a variational data assimilation (VDA) framework has been the subject of numerous studies. The VDA approaches are focused on the estimation of two key parameters that regulate the partitioning of available energy between sensible and latent heat fluxes. These parameters are neutral bulk heat transfer coefficient CHN and evaporative fraction (EF). The CHN mainly depends on the roughness of the surface and varies on the time scale of changing vegetation phenology. The existing VDA methods assumed that the variations in vegetation phenology over the period of one month are negligible and took CHN as a monthly constant parameter. However, during the growing season, bare soil may turn into a fully vegetated surface within a few weeks. Thus, assuming a constant CHN may result in a significant error in the estimation of surface fluxes, especially in regions with a high temporal variation in ve...


Remote Sensing | 2018

SPI-Based Analyses of Drought Changes over the Past 60 Years in China’s Major Crop-Growing Areas

Lang Xia; Fen Zhao; Kebiao Mao; Zijin Yuan; Zhiyuan Zuo; Tongren Xu

This study analyzes the changes in drought patterns in China’s major crop-growing areas over the past 60 years. The analysis was done using both weather station data and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rainfall data to calculate the Standardized Precipitation Index (SPI). The results showed that the occurrences of extreme drought were the most serious in recent years in the Southwest China and Sichuan crop-growing areas. The Yangtze River (MLRY) and South China crop-growing areas experienced extreme droughts during 1960–1980, whereas the Northeast China and Huang–Huai–Hai crop-growing areas experienced extreme droughts around 2003. The analysis showed that the SPIs calculated by TRMM data at time scales of one, three, and six months were reliable for monitoring drought in the study regions, but for 12 months, the SPIs calculated by gauge and TRMM data showed less consistency. The analysis of the spatial distribution of droughts over the past 15 years using TMI rainfall data revealed that more than 60% of the area experienced extreme drought in 2011 over the MLRY region and in 1998 over the Huang–Huai–Hai region. The frequency of different intensity droughts presented significant spatial heterogeneity in each crop-growing region.


Journal of Geophysical Research | 2018

Estimation of Turbulent Heat Fluxes by Assimilation of Land Surface Temperature Observations From GOES Satellites Into an Ensemble Kalman Smoother Framework

Tongren Xu; Sayed M. Bateni; C. M. U. Neale; Thomas Auligné; Shaomin Liu

In different studies, land surface temperature (LST) observations have been assimilated into the variational data assimilation (VDA) approaches to estimate turbulent heat fluxes. The VDA methods yield accurate turbulent heat fluxes, but they need an adjoint model, which is difficult to derive and code. They also cannot directly calculate the uncertainty of their estimates. To overcome the abovementioned drawbacks, this study assimilates LST data from Geostationary Operational Environmental Satellite into the ensemble Kalman smoother (EnKS) data assimilation system to estimate turbulent heat fluxes. EnKS does not need to derive the adjoint term and directly generates statistical information on the accuracy of its predictions. It uses the heat diffusion equation to simulate LST. EnKS with the state augmentation approach finds the optimal values for the unknown parameters (i.e., evaporative fraction and neutral bulk heat transfer coefficient, CHN) by minimizing the misfit between LST observations from Geostationary Operational Environmental Satellite and LST estimations from the heat diffusion equation. The augmented EnKS scheme is tested over six Ameriflux sites with a wide range of hydrological and vegetative conditions. The results show that EnKS can predict not only the model parameters and turbulent heat fluxes but also their uncertainties over a variety of land surface conditions. Compared to the variational method, EnKS yields suboptimal turbulent heat fluxes. However, suboptimality of EnKS is small, and its results are comparable to those of the VDA method. Overall, EnKS is a feasible and reliable method for estimation of turbulent heat fluxes.


Journal of Geophysical Research | 2018

Intercomparison of Six Upscaling Evapotranspiration Methods: From Site to the Satellite Pixel

Xiang Li; Shaomin Liu; Huaixiang Li; Yanfei Ma; Jianghao Wang; Yuan Zhang; Ziwei Xu; Tongren Xu; Lisheng Song; Xiaofan Yang; Zheng Lu; Zeyu Wang; Zhixia Guo

Land surface evapotranspiration (ET) is an important component of the surface energy budget and water cycle. To solve the problem of the spatial-scale mismatch between in situ observations and remotely sensed ET, it is necessary to find the most appropriate upscaling approach for acquiring ground truth ET data at the satellite pixel scale. Based on a data set from two flux observation matrices in the middle stream and downstream of the Heihe River Basin, six upscaling methods were intercompared via direct validation and cross validation. The results showed that the area-weighted method performed better than the other five upscaling methods introducing auxiliary variables (the integrated Priestley-Taylor equation, weighted area-to-area regression kriging [WATARK], artificial neural network, random forest [RF], and deep belief network methods) over homogeneous underlying surfaces. Over moderately heterogeneous underlying surfaces, the WATARK method performed better. However, the RF method performed better over highly heterogeneous underlying surfaces. A combined method (using the area-weighted and WATARK methods for homogeneous and moderately heterogeneous underlying surfaces, respectively, and using the RF method for highly heterogeneous underlying surfaces) was proposed to acquire the daily ground truth ET data at the satellite pixel scale, and the errors in the ground truth ET data were evaluated. The Dual Temperature Difference (DTD) and ETMonitor were validated using ground truth ET data, which solve the problem of the spatial-scale mismatch and quantify uncertainties in the validation process.

Collaboration


Dive into the Tongren Xu's collaboration.

Top Co-Authors

Avatar

Shaomin Liu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Ziwei Xu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongli Zhu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Lu Xu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Jianghao Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiemin Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengjin Shi

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge