Tongwu Zhang
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tongwu Zhang.
Pigment Cell & Melanoma Research | 2016
Tongwu Zhang; Ken Dutton-Regester; Kevin M. Brown; Nicholas K. Hayward
Somatic mutation analysis of melanoma has been performed at the single gene level extensively over the past several decades. This has provided considerable insight into the critical pathways controlling melanoma initiation and progression. During the last 5 yr, next‐generation sequencing (NGS) has enabled even more comprehensive mutational screening at the level of multigene panels, exomes and genomes. These studies have uncovered many new and unexpected players in melanoma development. The recent landmark study from The Cancer Genome Atlas (TCGA) consortium describing the genomic architecture of 333 cutaneous melanomas provides the largest and broadest analysis to date on the somatic aberrations underlying melanoma genesis. It thus seems timely to review the mutational landscape of melanoma and highlight the key genes and cellular pathways that appear to drive this cancer.
Science | 2017
Nicholas G. Crawford; Derek Kelly; Matthew Hansen; Marcia Holsbach Beltrame; Shaohua Fan; Shanna L. Bowman; Ethan M. Jewett; Alessia Ranciaro; Simon Thompson; Yancy Lo; Susanne P. Pfeifer; Jeffrey D. Jensen; Michael C. Campbell; William Beggs; Farhad Hormozdiari; Sununguko W. Mpoloka; Gaonyadiwe George Mokone; Thomas B. Nyambo; Dawit Wolde Meskel; Gurja Belay; Jake Haut; Harriet Rothschild; Leonard I. Zon; Yi Zhou; Michael Kovacs; Mai Xu; Tongwu Zhang; Kevin Bishop; Jason Sinclair; Cecilia Rivas
African genomics and skin color Skin color varies among human populations and is thought to be under selection, with light skin maximizing vitamin D production at higher latitudes and dark skin providing UV protection in equatorial zones. To identify the genes that give rise to the palette of human skin tones, Crawford et al. applied genome-wide analyses across diverse African populations (see the Perspective by Tang and Barsh). Genetic variants were identified with likely function in skin phenotypes. Comparison to model organisms verified a conserved function of MFSD12 in pigmentation. A global genetic panel was used to trace how alleles associated with skin color likely moved across the globe as humans migrated, both within and out of Africa. Science, this issue p. eaan8433; see also p. 867 Genome-wide analysis of 2000 Africans identifies and functionally characterizes pigmentation loci. INTRODUCTION Variation in pigmentation among human populations may reflect local adaptation to regional light environments, because dark skin is more photoprotective, whereas pale skin aids the production of vitamin D. Although genes associated with skin pigmentation have been identified in European populations, little is known about the genetic basis of skin pigmentation in Africans. RATIONALE Genetically and phenotypically diverse African populations are informative for mapping genetic variants associated with skin pigmentation. Analysis of the genetics of skin pigmentation in Africans informs upon melanocyte biology and the evolution of skin pigmentation in humans. RESULTS We observe extensive variation in skin pigmentation in Africa, with lowest melanin levels observed in southern African San hunter-gatherers and highest levels in East African Nilo-Saharan pastoralists. A genome-wide association study (GWAS) of 1570 Africans identified variants significantly associated with skin pigmentation, which clustered in four genomic regions that together account for almost 30% of the phenotypic variation. The most significantly associated single-nucleotide polymorphisms were at SLC24A5, a gene associated with pigmentation in Europeans. We show that SLC24A5 was introduced into East Africa >5 thousand years ago (ka) and has risen to high frequency. The second most significantly associated region is near the gene MFSD12. Using in vitro and in vivo analyses, we show that MFSD12 codes for a lysosomal protein that modifies pigmentation in human melanocytes, with decreased MFSD12 expression associated with darker pigmentation. We also show that genetic knockout of Mfsd12 affects pigmentation in mice. A third highly associated region encompasses a cluster of genes that play a role in ultraviolet (UV) response and DNA damage repair. We find the strongest associations in a regulatory region upstream of DDB1, the gene encoding damage-specific DNA binding protein 1, and that these variants are associated with increased expression of DDB1. The alleles associated with light pigmentation swept to near fixation outside of Africa due to positive selection, and we show that these lineages coalesce ~60 ka, corresponding with the time of migration of modern humans out of Africa. The fourth significantly associated region encompasses the OCA2 and HERC2 loci. We identify previously uncharacterized variants at HERC2 associated with the expression of OCA2. These variants arose independently from eye and skin pigmentation–associated variants in non-Africans. We also identify variants at OCA2 that are correlated with alternative splicing; alleles associated with light pigmentation are correlated with a shorter transcript, which lacks a transmembrane domain. CONCLUSION We identify previously uncharacterized genes and variants associated with skin pigmentation in ethnically diverse Africans. These genes have diverse functions, from repairing UV damage to playing important roles in melanocyte biology. We show that both dark and light pigmentation alleles arose before the origin of modern humans and that both light and dark pigmented skin has continued to evolve throughout hominid history. We show that variants associated with dark pigmentation in Africans are identical by descent in South Asian and Australo-Melanesian populations. This study sheds light on the evolutionary history, and adaptive significance, of skin pigmentation in humans. GWAS and functional assays illuminate the genetic basis of pigmentation in Africa. A GWAS identified four genomic regions associated with skin pigmentation in Africa. Functional assays in melanocytes and mice characterized their impact on skin pigmentation. Evolutionary genetic analyses revealed that most derived variants evolved before the origin of modern humans. Ma, million years ago. Despite the wide range of skin pigmentation in humans, little is known about its genetic basis in global populations. Examining ethnically diverse African genomes, we identify variants in or near SLC24A5, MFSD12, DDB1, TMEM138, OCA2, and HERC2 that are significantly associated with skin pigmentation. Genetic evidence indicates that the light pigmentation variant at SLC24A5 was introduced into East Africa by gene flow from non-Africans. At all other loci, variants associated with dark pigmentation in Africans are identical by descent in South Asian and Australo-Melanesian populations. Functional analyses indicate that MFSD12 encodes a lysosomal protein that affects melanogenesis in mice, and that mutations in melanocyte-specific regulatory regions near DDB1/TMEM138 correlate with expression of ultraviolet response genes under selection in Eurasians.
Cancer Research | 2015
Marzia Scortegagna; Eric Lau; Tongwu Zhang; Yongmei Feng; Chris Sereduk; Hongwei Yin; Surya K. De; Katrina Meeth; James T. Platt; Casey G. Langdon; Ruth Halaban; Maurizio Pellecchia; Michael A. Davies; Kevin D. Brown; David F. Stern; Marcus Bosenberg; Ze'ev Ronai
Melanoma development involves members of the AGC kinase family, including AKT, PKC, and, most recently, PDK1, as elucidated recently in studies of Braf::Pten mutant melanomas. Here, we report that PDK1 contributes functionally to skin pigmentation and to the development of melanomas harboring a wild-type PTEN genotype, which occurs in about 70% of human melanomas. The PDK1 substrate SGK3 was determined to be an important mediator of PDK1 activities in melanoma cells. Genetic or pharmacologic inhibition of PDK1 and SGK3 attenuated melanoma growth by inducing G1 phase cell-cycle arrest. In a synthetic lethal screen, pan-PI3K inhibition synergized with PDK1 inhibition to suppress melanoma growth, suggesting that focused blockade of PDK1/PI3K signaling might offer a new therapeutic modality for wild-type PTEN tumors. We also noted that responsiveness to PDK1 inhibition associated with decreased expression of pigmentation genes and increased expression of cytokines and inflammatory genes, suggesting a method to stratify patients with melanoma for PDK1-based therapies. Overall, our work highlights the potential significance of PDK1 as a therapeutic target to improve melanoma treatment.
Proteomics | 2016
Matthew Makowski; Esther Willems; Jun Fang; Jiyeon Choi; Tongwu Zhang; Pascal W. T. C. Jansen; Kevin M. Brown; Michiel Vermeulen
Aberrant telomerase reactivation in differentiated cells represents a major event in oncogenic transformation. Recurrent somatic mutations in the human telomerase reverse transcriptase (TERT) promoter region, predominantly localized to two nucleotide positions, are highly prevalent in many cancer types. Both mutations create novel consensus E26 transformation‐specific (ETS) motifs and are associated with increased TERT expression. Here, we perform an unbiased proteome‐wide survey of transcription factor binding at TERT promoter mutations in melanoma. We observe ELF1 binding at both mutations in vitro and we show that increased recruitment of GABP is enabled by the spatial architecture of native and novel ETS motifs in the TERT promoter region. We characterize the dynamics of competitive binding between ELF1 and GABP and provide evidence for ELF1 exclusion by transcriptionally active GABP. This study thus provides an important description of proteome‐wide, mutation‐specific binding at the recurrent, oncogenic TERT promoter mutations.
Cell Reports | 2015
Hyungsoo Kim; Dennie T. Frederick; Mitchell P. Levesque; Zachary A. Cooper; Yongmei Feng; Clemens Krepler; Laurence M. Brill; Yardena Samuels; Nicholas K. Hayward; Ally Perlina; Adriano Piris; Tongwu Zhang; Ruth Halaban; Meenhard Herlyn; Kevin M. Brown; Jennifer A. Wargo; Reinhard Dummer; Keith T. Flaherty; Ze'ev Ronai
SUMMARY Despite the remarkable clinical response of melanoma harboring BRAF mutations to BRAF inhibitors (BRAFi), most tumors become resistant. Here, we identified the downregulation of the ubiquitin ligase RNF125 in BRAFi-resistant melanomas and demonstrated its role in intrinsic and adaptive resistance to BRAFi in cultures as well as its association with resistance in tumor specimens. Sox10/MITF expression correlated with and contributed to RNF125 transcription. Reduced RNF125 was associated with elevated expression of receptor tyrosine kinases (RTKs), including EGFR. Notably, RNF125 altered RTK expression through JAK1, which we identified as an RNF125 substrate. RNF125 bound to and ubiquitinated JAK1, prompting its degradation and suppressing RTK expression. Inhibition of JAK1 and EGFR signaling overcame BRAFi resistance in melanoma with reduced RNF125 expression, as shown in culture and in in vivo xenografts. Our findings suggest that combination therapies targeting both JAK1 and EGFR could be effective against BRAFi-resistant tumors with de novo low RNF125 expression.
Nature Genetics | 2017
Jiyeon Choi; Mai Xu; Matthew Makowski; Tongwu Zhang; Matthew H. Law; Kovacs; Anton Granzhan; W.D.J. Kim; Hemang Parikh; Michael Gartside; Jeffrey M. Trent; Marie-Paule Teulade-Fichou; Mark M. Iles; Julia Newton-Bishop; D.T. Bishop; Stuart MacGregor; Nicholas K. Hayward; Michiel Vermeulen; Kevin M. Brown
Previous genome-wide association studies have identified a melanoma-associated locus at 1q42.1 that encompasses a ∼100-kb region spanning the PARP1 gene. Expression quantitative trait locus (eQTL) analysis in multiple cell types of the melanocytic lineage consistently demonstrated that the 1q42.1 melanoma risk allele (rs3219090[G]) is correlated with higher PARP1 levels. In silico fine-mapping and functional validation identified a common intronic indel, rs144361550 (−/GGGCCC; r2 = 0.947 with rs3219090), as displaying allele-specific transcriptional activity. A proteomic screen identified RECQL as binding to rs144361550 in an allele-preferential manner. In human primary melanocytes, PARP1 promoted cell proliferation and rescued BRAFV600E-induced senescence phenotypes in a PARylation-independent manner. PARP1 also transformed TERT-immortalized melanocytes expressing BRAFV600E. PARP1-mediated senescence rescue was accompanied by transcriptional activation of the melanocyte-lineage survival oncogene MITF, highlighting a new role for PARP1 in melanomagenesis.
Cell Reports | 2016
Giuseppina Claps; Yann Cheli; Tongwu Zhang; Marzia Scortegagna; Eric Lau; Hyungsoo Kim; Jianfei Qi; Jian-Liang Li; Brian James; Andreas Dzung; Mitchell P. Levesque; Reinhard Dummer; Nicholas K. Hayward; Marcus Bosenberg; Kevin M. Brown; Ze'ev Ronai
Melanoma is one of the most lethal cutaneous malignancies, characterized by chemoresistance and a striking propensity to metastasize. The transcription factor ATF2 elicits oncogenic activities in melanoma, and its inhibition attenuates melanoma development. Here, we show that expression of a transcriptionally inactive form of Atf2 (Atf2(Δ8,9)) promotes development of melanoma in mouse models. Atf2(Δ8,9)-driven tumors show enhanced pigmentation, immune infiltration, and metastatic propensity. Similar to mouse Atf2(Δ8,9), we have identified a transcriptionally inactive human ATF2 splice variant 5 (ATF2(SV5)) that enhances the growth and migration capacity of cultured melanoma cells and immortalized melanocytes. ATF2(SV5) expression is elevated in human melanoma specimens and is associated with poor prognosis. These findings point to an oncogenic function for ATF2 in melanoma development that appears to be independent of its transcriptional activity.
BMC Genomics | 2015
Nan Hu; Chaoyu Wang; Robert J. Clifford; Howard H. Yang; Hua Su; Lemin Wang; Yuan Wang; Yi Xu; Ze-Zhong Tang; Ti Ding; Tongwu Zhang; Alisa M. Goldstein; Carol Giffen; Maxwell P. Lee; Philip R. Taylor
BackgroundGenomic instability plays an important role in human cancers. We previously characterized genomic instability in esophageal squamous cell carcinomas (ESCC) in terms of loss of heterozygosity (LOH) and copy number (CN) changes in tumors. In the current study we focus on biallelic loss and its relation to expression of mRNA and miRNA in ESCC using results from 500K SNP, mRNA, and miRNA arrays in 30 cases from a high-risk region of China.Results(i) Biallelic loss was uncommon but when it occurred it exhibited a consistent pattern: only 77 genes (<0.5 %) showed biallelic loss in at least 10 % of ESCC samples, but nearly all of these genes were concentrated on just four chromosomal arms (ie, 42 genes on 3p, 14 genes on 9p, 10 genes on 5q, and seven genes on 4p). (ii) Biallelic loss was associated with lower mRNA expression: 52 of the 77 genes also had RNA expression data, and 41 (79 %) showed lower expression levels in cases with biallelic loss compared to those without. (iii) The relation of biallelic loss to miRNA expression was less clear but appeared to favor higher miRNA levels: of 60 miRNA-target gene pairs, 34 pairs (57 %) had higher miRNA expression with biallelic loss than without, while 26 pairs (43 %) had lower miRNA expression. (iv) Finally, the effect of biallelic loss on the relation between miRNA and mRNA expression was complex. Biallelic loss was most commonly associated with a pattern of elevated miRNA and reduced mRNA (43 %), but a pattern of both reduced miRNA and mRNA was also common (35 %).ConclusionOur results indicate that biallelic loss in ESCC is uncommon, but when it occurs it is localized to a few specific chromosome regions and is associated with reduced mRNA expression of affected genes. The effect of biallelic loss on miRNA expression and on the relation between miRNA and mRNA expressions was complex.
Cancer Research | 2015
Yongmei Feng; Anthony B. Pinkerton; Laura Hulea; Tongwu Zhang; Michael A. Davies; Stefan Grotegut; Yann Cheli; Hongwei Yin; Eric Lau; Hyungsoo Kim; Surya K. De; Elisa Barile; Maurizio Pellecchia; Marcus Bosenberg; Jian Liang Li; Brian James; Christian A. Hassig; Kevin M. Brown; Ivan Topisirovic; Ze'ev Ronai
Disrupting the eukaryotic translation initiation factor 4F (eIF4F) complex offers an appealing strategy to potentiate the effectiveness of existing cancer therapies and to overcome resistance to drugs such as BRAF inhibitors (BRAFi). Here, we identified and characterized the small molecule SBI-0640756 (SBI-756), a first-in-class inhibitor that targets eIF4G1 and disrupts the eIF4F complex. SBI-756 impaired the eIF4F complex assembly independently of mTOR and attenuated growth of BRAF-resistant and BRAF-independent melanomas. SBI-756 also suppressed AKT and NF-κB signaling, but small-molecule derivatives were identified that only marginally affected these pathways while still inhibiting eIF4F complex formation and melanoma growth, illustrating the potential for further structural and functional manipulation of SBI-756 as a drug lead. In the gene expression signature patterns elicited by SBI-756, DNA damage, and cell-cycle regulatory factors were prominent, with mutations in melanoma cells affecting these pathways conferring drug resistance. SBI-756 inhibited the growth of NRAS, BRAF, and NF1-mutant melanomas in vitro and delayed the onset and reduced the incidence of Nras/Ink4a melanomas in vivo. Furthermore, combining SBI-756 and a BRAFi attenuated the formation of BRAFi-resistant human tumors. Taken together, our findings show how SBI-756 abrogates the growth of BRAF-independent and BRAFi-resistant melanomas, offering a preclinical rationale to evaluate its antitumor effects in other cancers.
Gut | 2018
Mingfeng Zhang; Søren Lykke-Andersen; Bin Zhu; Wenming Xiao; Jason Hoskins; Xijun Zhang; Lauren Rost; Irene Collins; Martijn van de Bunt; Jinping Jia; Hemang Parikh; Tongwu Zhang; Lei Song; Ashley Jermusyk; Charles C. Chung; Weiyin Zhou; Gail L. Matters; Robert C. Kurtz; Meredith Yeager; Torben Heick Jensen; Kevin M. Brown; Halit Ongen; William R. Bamlet; Bradley A. Murray; Mark McCarthy; Stephen J. Chanock; Nilanjan Chatterjee; Brian M. Wolpin; Jill P. Smith; Sara H. Olson
Objective To elucidate the genetic architecture of gene expression in pancreatic tissues. Design We performed expression quantitative trait locus (eQTL) analysis in histologically normal pancreatic tissue samples (n=95) using RNA sequencing and the corresponding 1000 genomes imputed germline genotypes. Data from pancreatic tumour-derived tissue samples (n=115) from The Cancer Genome Atlas were included for comparison. Results We identified 38 615 cis-eQTLs (in 484 genes) in histologically normal tissues and 39 713 cis-eQTL (in 237 genes) in tumour-derived tissues (false discovery rate <0.1), with the strongest effects seen near transcriptional start sites. Approximately 23% and 42% of genes with significant cis-eQTLs appeared to be specific for tumour-derived and normal-derived tissues, respectively. Significant enrichment of cis-eQTL variants was noted in non-coding regulatory regions, in particular for pancreatic tissues (1.53-fold to 3.12-fold, p≤0.0001), indicating tissue-specific functional relevance. A common pancreatic cancer risk locus on 9q34.2 (rs687289) was associated with ABO expression in histologically normal (p=5.8×10−8) and tumour-derived (p=8.3×10−5) tissues. The high linkage disequilibrium between this variant and the O blood group generating deletion variant in ABO (exon 6) suggested that nonsense-mediated decay (NMD) of the ‘O’ mRNA might explain this finding. However, knockdown of crucial NMD regulators did not influence decay of the ABO ‘O’ mRNA, indicating that a gene regulatory element influenced by pancreatic cancer risk alleles may underlie the eQTL. Conclusions We have identified cis-eQTLs representing potential functional regulatory variants in the pancreas and generated a rich data set for further studies on gene expression and its regulation in pancreatic tissues.