Toni Rieger
Bernhard Nocht Institute for Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toni Rieger.
The New England Journal of Medicine | 2014
Sylvain Baize; Delphine Pannetier; Lisa Oestereich; Toni Rieger; Lamine Koivogui; Barré Soropogui; Mamadou Saliou Sow; Sakoba Keita; Hilde De Clerck; Amanda Tiffany; Gemma Dominguez; Mathieu Loua; Alexis Traoré; Moussa Kolié; Emmanuel Roland Malano; Emmanuel Heleze; Anne Bocquin; Stéphane Mély; Hervé Raoul; Valérie Caro; Daniel Cadar; Martin Gabriel; Meike Pahlmann; Dennis Tappe; Jonas Schmidt-Chanasit; Benido Impouma; Abdoul Karim Diallo; Michel Van Herp; Stephan Günther
In March 2014, the World Health Organization was notified of an outbreak of a communicable disease characterized by fever, severe diarrhea, vomiting, and a high fatality rate in Guinea. Virologic investigation identified Zaire ebolavirus (EBOV) as the causative agent. Full-length genome sequencing and phylogenetic analysis showed that EBOV from Guinea forms a separate clade in relationship to the known EBOV strains from the Democratic Republic of Congo and Gabon. Epidemiologic investigation linked the laboratory-confirmed cases with the presumed first fatality of the outbreak in December 2013. This study demonstrates the emergence of a new EBOV strain in Guinea.
Antiviral Research | 2014
Lisa Oestereich; Anja Lüdtke; Stephanie Wurr; Toni Rieger; César Muñoz-Fontela; Stephan Günther
Outbreaks of Ebola hemorrhagic fever in sub-Saharan Africa are associated with case fatality rates of up to 90%. Currently, neither a vaccine nor an effective antiviral treatment is available for use in humans. Here, we evaluated the efficacy of the pyrazinecarboxamide derivative T-705 (favipiravir) against Zaire Ebola virus (EBOV) in vitro and in vivo. T-705 suppressed replication of Zaire EBOV in cell culture by 4log units with an IC90 of 110μM. Mice lacking the type I interferon receptor (IFNAR(-)(/)(-)) were used as in vivo model for Zaire EBOV-induced disease. Initiation of T-705 administration at day 6 post infection induced rapid virus clearance, reduced biochemical parameters of disease severity, and prevented a lethal outcome in 100% of the animals. The findings suggest that T-705 is a candidate for treatment of Ebola hemorrhagic fever.
Journal of Virology | 2010
Markus Mordstein; Eva Neugebauer; Vanessa Ditt; Birthe Jessen; Toni Rieger; Valeria Falcone; Frédéric Sorgeloos; Stephan Ehl; Daniel Mayer; Georg Kochs; Martin Schwemmle; Stephan Günther; Christian Drosten; Thomas Michiels; Peter Staeheli
ABSTRACT Virus-infected cells secrete a broad range of interferons (IFN) which confer resistance to yet uninfected cells by triggering the synthesis of antiviral factors. The relative contributions of the various IFN subtypes to innate immunity against virus infections remain elusive. IFN-α, IFN-β, and other type I IFN molecules signal through a common, universally expressed cell surface receptor, whereas type III IFN (IFN-λ) uses a distinct cell-type-specific receptor complex for signaling. Using mice lacking functional receptors for type I IFN, type III IFN, or both, we found that IFN-λ plays an important role in the defense against several human pathogens that infect the respiratory tract, such as influenza A virus, influenza B virus, respiratory syncytial virus, human metapneumovirus, and severe acute respiratory syndrome (SARS) coronavirus. These viruses were more pathogenic and replicated to higher titers in the lungs of mice lacking both IFN receptors than in mice with single IFN receptor defects. In contrast, Lassa fever virus, which infects via the respiratory tract but primarily replicates in the liver, was not influenced by the IFN-λ receptor defect. Careful analysis revealed that expression of functional IFN-λ receptor complexes in the lung and intestinal tract is restricted to epithelial cells and a few other, undefined cell types. Interestingly, we found that SARS coronavirus was present in feces from infected mice lacking receptors for both type I and type III IFN but not in those from mice lacking single receptors, supporting the view that IFN-λ contributes to the control of viral infections in epithelial cells of both respiratory and gastrointestinal tracts.
PLOS Neglected Tropical Diseases | 2014
Lisa Oestereich; Toni Rieger; Melanie Neumann; Christian Bernreuther; Maria Lehmann; Susanne Krasemann; Stephanie Wurr; Petra Emmerich; Xavier de Lamballerie; Stephan Ölschläger; Stephan Günther
Background Mice lacking the type I interferon receptor (IFNAR−/− mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR−/− mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus. Methodology/Principal Findings CCHF virus-infected IFNAR−/− mice died 2–6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6–2.8 µg/ml; IC90 1.2–4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR−/− mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects. Conclusions/Significance Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.
PLOS Pathogens | 2010
Lukas Flatz; Toni Rieger; Doron Merkler; Andreas Bergthaler; Tommy Regen; Mariann Schedensack; Lukas Bestmann; Admar Verschoor; Mario Kreutzfeldt; Wolfgang Brück; Uwe-Karsten Hanisch; Stephan Günther; Daniel D. Pinschewer
Lassa virus (LASV), the causative agent of Lassa fever (LF), is endemic in West Africa, accounting for substantial morbidity and mortality. In spite of ongoing research efforts, LF pathogenesis and mechanisms of LASV immune control remain poorly understood. While normal laboratory mice are resistant to LASV, we report that mice expressing humanized instead of murine MHC class I (MHC-I) failed to control LASV infection and develop severe LF. Infection of MHC-I knockout mice confirmed a key role for MHC-I-restricted T cell responses in controlling LASV. Intriguingly we found that T cell depletion in LASV-infected HHD mice prevented disease, irrespective of high-level viremia. Widespread activation of monocyte/macrophage lineage cells, manifest through inducible NO synthase expression, and elevated IL-12p40 serum levels indicated a systemic inflammatory condition. The absence of extensive monocyte/macrophage activation in T cell-depleted mice suggested that T cell responses contribute to deleterious innate inflammatory reactions and LF pathogenesis. Our observations in mice indicate a dual role for T cells, not only protecting from LASV, but also enhancing LF pathogenesis. The possibility of T cell-driven enhancement and immunopathogenesis should be given consideration in future LF vaccine development.
Emerging Infectious Diseases | 2015
Nicholas G. Conger; Kristopher M. Paolino; Erik C. Osborn; Janice M. Rusnak; Stephan Günther; Jane Pool; Pierre E. Rollin; Patrick F. Allan; Jonas Schmidt-Chanasit; Toni Rieger; Mark G. Kortepeter
Early recognition and implementation of appropriate infection control measures were effective in preventing further transmission.
Lancet Infectious Diseases | 2012
Judith van Paassen; Martijn P. Bauer; M. Sesmu Arbous; Leo G. Visser; Jonas Schmidt-Chanasit; Stefan Schilling; Stephan Ölschläger; Toni Rieger; Petra Emmerich; Christel Schmetz; Franchette van de Berkmortel; Bart van Hoek; Nathalie D. van Burgel; Albert D. M. E. Osterhaus; A.C.T.M. Vossen; Stephan Günther; Jaap T. van Dissel
A woman developed Marburg haemorrhagic fever in the Netherlands, most likely as a consequence of being exposed to virus-infected bats in the python cave in Maramagambo Forest during a visit to Uganda. The clinical syndrome was dominated by acute liver failure with secondary coagulopathy, followed by a severe systemic inflammatory response, multiorgan failure, and fatal cerebral oedema. A high blood viral load persisted during the course of the disease. The initial systemic inflammatory response coincided with peaks in interferon-γ and tumour necrosis factor-α concentrations in the blood. A terminal rise in interleukin-6, placental growth factor (PlGF), and soluble vascular endothelial growth factor receptor-1 (sVEGF-R1) seemed to suggest an advanced pathophysiological stage of Marburg haemorrhagic fever associated with vascular endothelial dysfunction and fatal cerebral oedema. The excess of circulating sVEGF-R1 and the high sVEGF-R1:PlGF ratio shortly before death resemble pathophysiological changes thought to play a causative part in pre-eclampsia. Aggressive critical-care treatment with renal replacement therapy and use of the molecular absorbent recirculation system appeared able to stabilise--at least temporarily--the patients condition.
The Lancet Global Health | 2017
Daouda Sissoko; Sophie Duraffour; Romy Kerber; Jacques Seraphin Kolié; Abdoul Habib Beavogui; Alseny Modet Camara; Géraldine Colin; Toni Rieger; Lisa Oestereich; Bernadett Pályi; Stephanie Wurr; Jeremie Guedj; Thi Huyen Tram Nguyen; Rosalind M. Eggo; Conall H. Watson; W. John Edmunds; Joseph Akoi Bore; Fara Raymond Koundouno; Mar Cabeza-Cabrerizo; Lisa L. Carter; Liana Eleni Kafetzopoulou; Eeva Kuisma; Janine Michel; Livia Victoria Patrono; Natasha Y. Rickett; Katrin Singethan; Martin Rudolf; Angelika Lander; Elisa Pallasch; Sabrina Bockholt
BACKGROUND By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. METHODS In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. INTERPRETATION Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. FUNDING This study was funded by European Unions Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking.
The Journal of Infectious Diseases | 2016
Lisa Oestereich; Toni Rieger; Anja Lüdtke; Paula Ruibal; Stephanie Wurr; Elisa Pallasch; Sabrina Bockholt; Susanne Krasemann; César Muñoz-Fontela; Stephan Günther
We studied the therapeutic potential of favipiravir (T-705) for Lassa fever, both alone and in combination with ribavirin. Favipiravir suppressed Lassa virus replication in cell culture by 5 log10 units. In a novel lethal mouse model, it lowered the viremia level and the virus load in organs and normalized levels of cell-damage markers. Treatment with 300 mg/kg per day, commenced 4 days after infection, when the viremia level had reached 4 log10 virus particles/mL, rescued 100% of Lassa virus–infected mice. We found a synergistic interaction between favipiravir and ribavirin in vitro and an increased survival rate and extended survival time when combining suboptimal doses in vivo.
Journal of Virology | 2011
Romy Kerber; Toni Rieger; Carola Busch; Lukas Flatz; Daniel D. Pinschewer; Beate M. Kümmerer; Stephan Günther
ABSTRACT Lassa virus (LASV) causing hemorrhagic Lassa fever in West Africa, Mopeia virus (MOPV) from East Africa, and lymphocytic choriomeningitis virus (LCMV) are the main representatives of the Old World arenaviruses. Little is known about how the components of the arenavirus replication machinery, i.e., the genome, nucleoprotein (NP), and L protein, interact. In addition, it is unknown whether these components can function across species boundaries. We established minireplicon systems for MOPV and LCMV in analogy to the existing LASV system and exchanged the components among the three systems. The functional and physical integrity of the resulting complexes was tested by reporter gene assay, Northern blotting, and coimmunoprecipitation studies. The minigenomes, NPs, and L proteins of LASV and MOPV could be exchanged without loss of function. LASV and MOPV L protein was also active in conjunction with LCMV NP, while the LCMV L protein required homologous NP for activity. Analysis of LASV/LCMV NP chimeras identified a single LCMV-specific NP residue (Ile-53) and the C terminus of NP (residues 340 to 558) as being essential for LCMV L protein function. The defect of LASV and MOPV NP in supporting transcriptional activity of LCMV L protein was not caused by a defect in physical NP-L protein interaction. In conclusion, components of the replication complex of Old World arenaviruses have the potential to functionally and physically interact across species boundaries. Residue 53 and the C-terminal domain of NP are important for function of L protein during genome replication and transcription.