Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tonia A. Rihs is active.

Publication


Featured researches published by Tonia A. Rihs.


European Journal of Neuroscience | 2007

Mechanisms of selective inhibition in visual spatial attention are indexed by α-band EEG synchronization

Tonia A. Rihs; Christoph M. Michel; Gregor Thut

Electroencephalographic studies in humans have demonstrated that orienting of visual attention induces a decrease in oscillatory α‐band activity (α‐desynchronization) over cortical areas tuned to the attended visual space. This is interpreted as reflecting intentionally enhanced excitability of these areas to facilitate upcoming visual processing. However, the inverse mechanism might also apply. Brain areas that process task‐irrelevant space might be actively suppressed by increased α‐activity (α‐synchronization) to protect against input of distracter information. In the present study, we demonstrate that such suppression mechanisms are highly selective and are taking place even without distracters that need to be ignored. During voluntary orienting of attention, we found α‐synchronization to dominate over desynchronization, to be topographically specific for each of eight attention positions, and to occur over areas processing unattended space in a retinotopically organized pattern. This indicates that α‐synchronization is an important component of selective attention, serving active suppression of unattended positions during visual spatial orienting.


Neuroreport | 2008

Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability

Vincenzo Romei; Tonia A. Rihs; Verena Brodbeck; Gregor Thut

Variations of oscillatory brain activity have been related to distinct functional states depending on the frequency of oscillations. In the &agr;-band (about 8–14 Hz), decreased oscillatory activity is thought to reflect a state of enhanced cortical excitability, and increased activity to reflect a state of cortical idling or inhibition in which excitability is reduced, but the &agr;/excitability link has not been probed directly. Here, we studied the relationship between resting oscillatory activity and visual cortex excitability across participants using electroencephalography and transcranial magnetic stimulation to the occipital pole. We found individual posterior &agr;-band power to correlate with the individual threshold for eliciting illusory, transcranial magnetic stimulation-induced visual percepts. This provides direct support for an &agr;/excitability link and for baseline states of the visual brain to vary across individuals.


NeuroImage | 2009

A bias for posterior α-band power suppression versus enhancement during shifting versus maintenance of spatial attention

Tonia A. Rihs; Christoph M. Michel; Gregor Thut

Voluntarily directing visual attention to a cued position in space leads to improved processing of forthcoming visual stimuli at the attended position, and attenuated processing of competing stimuli elsewhere, due to anticipatory tuning of visual cortex activity. In EEG, recent evidence points to a determining role of modulations of posterior alpha-band activity (8-14 Hz) in such anticipatory facilitation (alpha-power decreases) versus inhibition (alpha-power increases). Yet, while such alpha-modulations are a common finding, the direction of modulation varies to a great extent across studies implying dependence on task demands. Here, we reveal opposite modulation of posterior alpha-power with early/initiation versus later/sustained processes of anticipatory attention orienting. Marked alpha-decreases were observed during shifting of attention (initial 700 ms) over occipito-parietal areas processing to-be-attended visual space, while alpha-increases dominated in the subsequent maintenance phase (>700 ms) over occipito-parietal cortex tuned to unattended positions. Notably, the presence of alpha-modulation strongly depended on individual resting alpha-power. Overall, this provides further support to an active facilitative versus inhibitory role of alpha-power decreases and increases and suggests that these attention-related changes are differentially deployed during anticipatory attention orienting to prepare versus maintain the cortex for optimal target processing.


Psychiatry Research-neuroimaging | 2000

Mood effects of repetitive transcranial magnetic stimulation of left prefrontal cortex in healthy volunteers

Urs Peter Mosimann; Tonia A. Rihs; Judith Engeler; Hans U. Fisch; Thomas E. Schlaepfer

This study investigated the effect of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) of the left prefrontal cortex (LPFC) on mood in a sham-controlled crossover design. Twenty-five healthy male subjects received HF-rTMS of the LPFC in real and sham conditions. Forty trains (frequency 20 Hz, stimulation intensity 100% of individual motor threshold, train duration 2 s, intertrain interval 28 s) were applied in each session. Mood change from baseline was measured with five visual analog scales (VAS) for sadness, anxiety, happiness, tiredness and pain/discomfort. We were unable to demonstrate significant mood changes from baseline on visual analog scales after either sham or real stimulation of LPFC. There is insufficient evidence to support the general conclusion that HF-rTMS of LPFC has mood effects in healthy volunteers. Future studies should be sham-controlled, have larger sample sizes, and strictly stimulate one single region per session in order to exclude interaction effects with the previous stimulation.


Schizophrenia Research | 2014

Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia?

Miralena I. Tomescu; Tonia A. Rihs; Robert Becker; Juliane Britz; Anna Custo; Frédéric Grouiller; Maude Schneider; Martin Debbané; Stephan Eliez; Christoph M. Michel

Previous studies have repeatedly found altered temporal characteristics of EEG microstates in schizophrenia. The aim of the present study was to investigate whether adolescents affected by the 22q11.2 deletion syndrome (22q11DS), known to have a 30 fold increased risk to develop schizophrenia, already show deviant EEG microstates. If this is the case, temporal alterations of EEG microstates in 22q11DS individuals could be considered as potential biomarkers for schizophrenia. We used high-density (204 channel) EEG to explore between-group microstate differences in 30 adolescents with 22q11DS and 28 age-matched controls. We found an increased presence of one microstate class (class C) in the 22q11DS adolescents with respect to controls that was associated with positive prodromal symptoms (hallucinations). A previous across-age study showed that the class C microstate was more present during adolescence and a combined EEG-fMRI study associated the class C microstate with the salience resting state network, a network known to be dysfunctional in schizophrenia. Therefore, the increased class C microstates could be indexing the increased risk of 22q11DS individuals to develop schizophrenia if confirmed by our ongoing longitudinal study comparing both the adult 22q11DS individuals with and without schizophrenia, as well as schizophrenic individuals with and without 22q11DS.


Psychiatry Research-neuroimaging | 2013

Altered auditory processing in frontal and left temporal cortex in 22q11.2 deletion syndrome: a group at high genetic risk for schizophrenia.

Tonia A. Rihs; Miralena I. Tomescu; Juliane Britz; Vincent Rochas; Anna Custo; Maude Schneider; Martin Debbané; Stephan Eliez; Christoph M. Michel

In order to investigate electroencephalographic (EEG) biomarkers of auditory processing for schizophrenia, we studied a group with a well known high-risk profile: patients with 22q11.2 deletion syndrome (22q11 DS) have a 30% risk of developing schizophrenia during adulthood. We performed high-density EEG source imaging to measure auditory gating of the P50 component of the evoked potential and middle to late latency auditory processing in 21 participants with the 22q11.2 deletion and 17 age-matched healthy controls. While we found no indication of altered P50 suppression in 22q11 DS, we observed marked differences for the first N1 component with increased amplitudes on central electrodes, corresponding to increased activations in dorsal anterior cingulate and medial frontal cortex. We also found a left lateralized reduction of activation of primary and secondary auditory cortex during the second N1 (120ms) and the P2 component in 22q11 DS. Our results show that sensory gating and activations until 50ms were preserved in 22q11 DS, while impairments appear at latencies that correspond to higher order auditory processing. While the increased activation of cingulate and medial frontal cortex could reflect developmental changes in 22q11 DS, the reduced activity seen in left auditory cortex might serve as a biomarker for the development of schizophrenia, if confirmed by longitudinal research protocols.


Cortex | 2015

Gender differences in the neural network of facial mimicry of smiles – An rTMS study

Sebastian Korb; Jennifer Malsert; Vincent Rochas; Tonia A. Rihs; Sebastian Walter Rieger; Samir Schwab; Paula M. Niedenthal; Didier Maurice Grandjean

Under theories of embodied emotion, exposure to a facial expression triggers facial mimicry. Facial feedback is then used to recognize and judge the perceived expression. However, the neural bases of facial mimicry and of the use of facial feedback remain poorly understood. Furthermore, gender differences in facial mimicry and emotion recognition suggest that different neural substrates might accompany the production of facial mimicry, and the processing of facial feedback, in men and women. Here, repetitive transcranial magnetic stimulation (rTMS) was applied to the right primary motor cortex (M1), the right primary somatosensory cortex (S1), or, in a control condition, the vertex (VTX). Facial mimicry of smiles and emotion judgments were recorded in response to video clips depicting changes from neutral or angry to happy facial expressions. While in females rTMS over M1 and S1 compared to VTX led to reduced mimicry and, in the case of M1, delayed detection of smiles, there was no effect of TMS condition for males. We conclude that in female participants M1 and S1 play a role in the mimicry and in the use of facial feedback for accurate processing of smiles.


Brain Topography | 2014

Parieto-Frontal Circuits During Observation of Hidden and Visible Motor Acts in Children. A High-density EEG Source Imaging Study

Cristina Berchio; Tonia A. Rihs; Christoph M. Michel; Denis Brunet; Fabio Apicella; Filippo Muratori; Vittorio Gallese; Maria Alessandra Umiltà

Several studies showed that in the human brain specific premotor and parietal areas are activated during the execution and observation of motor acts. The activation of this premotor-parietal network displaying the so-called Mirror Mechanism (MM) was proposed to underpin basic forms of action understanding. However, the functional properties of the MM in children are still largely unknown. In order to address this issue, we recorded high-density EEG from 12 children (6 female, 6 male; average age 10.5, SD ±2.15). Data were collected when children observed video clips showing hands grasping objects in two different experimental conditions: (1) Full Vision, in which the motor act was fully visible; (2) Hidden, in which the interaction between the hand and the object was not visible. Event-related potentials (ERPs) and topographic map analyses were used to investigate the temporal pattern of the ERPs and their brain source of localization, employing a children template of the Montreal Neurological Institute. Results showed that two different parieto-premotor circuits are activated by the observation of object-related hand reaching-to-grasping motor acts in children. The first circuit comprises the ventral premotor and the inferior parietal cortices. The second one comprises the dorsal premotor and superior parietal cortices. The activation of both circuits is differently lateralized and modulated in time, and influenced by the amount of visual information available about the hand grasping-related portion of the observed motor acts.


Schizophrenia Research: Cognition | 2015

Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: A candidate endophenotype of schizophrenia

Miralena I. Tomescu; Tonia A. Rihs; Maya Roinishvili; F. Isik Karahanoglu; Maude Schneider; Sarah Menghetti; Dimitri Van De Ville; Andreas Brand; Eka Chkonia; Stephan Eliez; Michael H. Herzog; Christoph M. Michel; Céline Cappe

Schizophrenia is a complex psychiatric disorder and many of the factors contributing to its pathogenesis are poorly understood. In addition, identifying reliable neurophysiological markers would improve diagnosis and early identification of this disease. The 22q11.2 deletion syndrome (22q11DS) is one major risk factor for schizophrenia. Here, we show further evidence that deviant temporal dynamics of EEG microstates are a potential neurophysiological marker by showing that the resting state patterns of 22q11DS are similar to those found in schizophrenia patients. The EEG microstates are recurrent topographic distributions of the ongoing scalp potential fields with temporal stability of around 80 ms that are mapping the fast reconfiguration of resting state networks. Five minutes of high-density EEG recordings was analysed from 27 adult chronic schizophrenia patients, 27 adult controls, 30 adolescents with 22q11DS, and 28 adolescent controls. In both patient groups we found increased class C, but decreased class D presence and high transition probabilities towards the class C microstates. Moreover, these aberrant temporal dynamics in the two patient groups were also expressed by perturbations of the long-range dependency of the EEG microstates. These findings point to a deficient function of the salience and attention resting state networks in schizophrenia and 22q11DS as class C and class D microstates were previously associated with these networks, respectively. These findings elucidate similarities between individuals at risk and schizophrenia patients and support the notion that abnormal temporal patterns of EEG microstates might constitute a marker for developing schizophrenia.


Biological Psychology | 2016

Early averted gaze processing in the right Fusiform Gyrus: An EEG source imaging study

Cristina Berchio; Tonia A. Rihs; Camille Piguet; Alexandre Dayer; Jean-Michel Aubry; Christoph M. Michel

Humans are able to categorize face properties with impressively short latencies. Nevertheless, the latency at which gaze recognition occurs is still a matter of debate. Through spatio-temporal analysis of high-density event-related potentials (ERP), we investigated the brain activity underlying the ability to spontaneously and quickly process gaze. We presented neutral faces with direct and averted gaze in a matching picture paradigm, where subjects had to detect repetition of identical faces and gaze was implicitly manipulated. The results indicate that faces with averted gaze were better discriminated than faces with direct gaze, and evoked stronger P100 amplitudes localized to the right fusiform gyrus. In contrast, direct gaze induced stronger activation in the orbital frontal gyrus at this latency. Later in time, at the beginning of the N170 component, direct gaze induced changes in scalp topography with a stronger activation in the right medial temporal gyrus. The location of these differential activations of direct vs. averted gaze further support the view that faces with averted gaze are perceived as less rewarding than faces with direct gaze. We additionally found differential ERP responses between repeated and novel faces as early as 50ms, thereby replicating earlier studies of very fast detection of mnestic aspects of stimuli. Together, these results suggest an early dissociation between implicit gaze detection and explicit identity processing.

Collaboration


Dive into the Tonia A. Rihs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge