Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tonia L. Mehlhorn is active.

Publication


Featured researches published by Tonia L. Mehlhorn.


Geochimica et Cosmochimica Acta | 1996

Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

Baohua Gu; Tonia L. Mehlhorn; Liyuan Liang; John F. McCarthy

Abstract The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salycylic acids. The transport of SR-NOM is found to involve a complex competitive interaction and displacement of different NOM subcomponents. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning and transport.


Geochimica et Cosmochimica Acta | 1996

Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption

Baohua Gu; Tonia L. Mehlhorn; Liyuan Liang; John F. McCarthy

Different organic compounds or fractions of natural organic matter (NOM) show different adsorption affinities (K) and capacities (qm) on mineral surfaces. We hypothesize that these different organic compounds or fractions compete for adsorption when surface adsorption sites are limited. In this study, competitive adsorption of binary mixtures of Suwannee River NOM (SR-NOM), polyacrylic acid (PAA), phthalic acid, and salicylic acid on iron oxide was investigated at a constant solid:solution ratio, temperature, and pressure, but at varying C weight fractions, pH, and solution concentrations of the mixture. Results revealed that, in general, PAA is the most competitive whereas SR-NOM is more competitive than phthalic and salicylic acids. The competitive adsorption of these organic compounds is pH-dependent. At pH 4 in comparison with other organics is attributed to its high carboxyl density and linear molecular structure, which promote strong surface complexation with iron oxide. Because of the heterogeneity or polydispersity of NOM, this research indicates that NOM partitioning and transport in the subsurface soil environment are influenced by the dynamic competitive interactions between NOM subcomponents (or fractions). This process ultimately influences the distribution, interaction, and cotransport of contaminants and mineral colloids that are associated with NOM.


Environmental Science & Technology | 2010

Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface.

Wenmin Wu; Jack Carley; Stefan J. Green; Jian Luo; Shelly D. Kelly; J. D. Van Nostrand; Kenneth Lowe; Tonia L. Mehlhorn; Sue L. Carroll; B. Boonchayanant; F. E. Lüfller; David B. Watson; Kenneth M. Kemner; Jizhong Zhou; Peter K. Kitanidis; Joel E. Kostka; P. M. Jardine; Craig S. Criddle

The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.


Geochimica et Cosmochimica Acta | 1993

Iron dynamics: Transformation of Fe(II)/Fe(III) during injection of natural organic matter in a sandy aquifer

Liyuan Liang; John F. McCarthy; Louwanda W. Jolley; J.Andrew McNabb; Tonia L. Mehlhorn

The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in Stumm and Morgan (1981): d[Fe(II)]dt = −kobs[O2(aq)][H+]2[Fe(II)] , with a rate constant, kobs to be 1.9 × 10−12 M min−1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by Stumm and Morgan (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of 1. (1) slow oxidation, 2. (2) ligand-promoted and catalytic dissolution of deposited iron phases, and 3. (3) the transport of newly formed iron oxide colloids along flow paths.


Applied and Environmental Microbiology | 2011

A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer

Thomas M. Gihring; Gengxin Zhang; Craig C. Brandt; Scott C. Brooks; James H. Campbell; Susan L. Carroll; Craig S. Criddle; Stefan J. Green; P. M. Jardine; Joel E. Kostka; Kenneth Lowe; Tonia L. Mehlhorn; Will A. Overholt; David B. Watson; Zamin Yang; Wei-Min Wu; Christopher W. Schadt

ABSTRACT Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3 −, Fe(III), U(VI), and SO4 2− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.


Environmental Science & Technology | 2013

In Situ Bioremediation of Uranium with Emulsified Vegetable Oil as the Electron Donor

David B. Watson; Wei-Min Wu; Tonia L. Mehlhorn; Guoping Tang; Jennifer E. Earles; Kenneth Lowe; Thomas M. Gihring; Gengxin Zhang; Jana Randolph Phillips; Maxim I. Boyanov; Brian Patrick Spalding; Christopher W. Schadt; Kenneth M. Kemner; Craig S. Criddle; Philip M. Jardine; Scott C. Brooks

A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.


Soil and Sediment Contamination: An International Journal | 2010

Effects of Contaminant Concentration, Aging, and Soil Properties on the Bioaccessibility of Cr(III) and Cr(VI) in Soil

Melanie Stewart; P. M. Jardine; C. C. Brandt; Mark O. Barnett; Scott Fendorf; Larry D. McKay; Tonia L. Mehlhorn; K. Paul

Contaminated soils at numerous U.S. Department of Defense, Department of Energy, and other industrial facilities often contain huge inventories of toxic metals such as chromium. Ingestion of soil by children is often the primary risk factor that drives the need for remediation. Site assessments are typically based solely on total soil-metal concentrations and do not consider the potential for decreased bioaccessibility due to metal sequestration by soil. The objectives of this research are to investigate the effect of soil properties on the bioaccessibility of Cr(III) and Cr(VI) as a function of contaminant concentration and aging. The A and upper B horizons of two well-characterized soils, representative of Cr-contaminated soils in the southeastern United States, were treated with varying concentration of Cr(III) and Cr(VI) and allowed to age. The bioaccessibility of the contaminated soils was measured over a 200-d time period using a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The sorption of Cr(III) and Cr(VI) varied significantly as a function of soil type and horizon, and the oxidation state of the contaminant. Solid phase concentrations with Cr(III) were significantly greater than Cr(VI) for any given initial Cr concentration. This is consistent with the mechanisms of Cr(III) vs. Cr(VI) sequestration by the soils, where the formation of Cr(III)-hydroxides can result in the accumulation of large mass fractions of contaminant on mineral surfaces. Overall, Cr bioaccessibility decreased with duration of exposure for all soils and at all solid phase concentrations, with aging effects being more pronounced for Cr(III). The decrease in Cr bioaccessibility was rapid for the first 50 d and then slowed dramatically between 50 and 200 d. In general, the effects of Cr solid phase concentration on bioaccessibility was small, with Cr(III) showing the most pronounced effect; higher solid phase concentrations resulted in a decrease in bioaccessibility. Chemical extraction methods and X-ray Adsorption Spectroscopy analyses suggested that the bioaccessibility of Cr(VI) was significantly influenced by reduction processes catalyzed by soil organic carbon. Soils with sufficient organic carbon had lower Cr bioaccessibility values (∼10 to 20%) due to an enhanced reduction of Cr(VI) to Cr(III). In soils where organic carbon was limited and reduction processes were minimal, the bioaccessibility of Cr(VI) dramatically increased (∼60 to 70%).


Gene | 1996

A transposon for green fluorescent protein transcriptional fusions: application for bacterial transport experiments.

Robert S. Burlage; Zamin K. Yang; Tonia L. Mehlhorn

The movement of bacteria through groundwater is a poorly understood process. Factors such as soil porosity and mineralogy, heterogeneity of soil particle size, and response of the bacteria to their environment contribute to the pattern of bacterial flow. The identification of transported bacteria is often a limiting factor in both laboratory and field transport experiments. Two bacterial strains were modified for use in bacterial transport experiments: a strain of Escherichia coli harboring the pGFP plasmid and a strain of Pseudomonas putida modified with a Tn5 derivative, Tn5GFP1. The Tn5GFP1 transposon incorporates the gene (gfp) encoding green fluorescent protein (GFP) and can be used to mutagenize Gram-bacteria. Fluorescent colonies were suspended in phosphate-buffered saline (PBS) at a concentration of approx. 10(9) bacteria/ml. A 10-cm glass column packed with quartz sand (diameter range 177-250 microns) was equilibrated with PBS prior to the forced flow introduction of the bacteria. Collected fractions were analyzed and the bacteria quantitated using a fluorescence spectrometer. Results demonstrate that the bacteria can be accurately tracked using their fluorescence, and that the intensity of the signal can be used to determine a C/Co ratio for the transported bacteria. The data show a rapid breakthrough of the bacteria followed by a characteristic curve pattern. A lower limit of detection of 10(5) cells was estimated based on these experiments. The Tn5GFP1 transposon should become a valuable tool for labeling bacteria.


Journal of Hydrology | 2003

Transport of Multiple Tracers in Variably Saturated Humid Region Structured Soils and Semi-arid Region Laminated Sediments

Melanie A. Mayes; Phillip M. Jardine; Tonia L. Mehlhorn; Bruce N. Bjornstad; J L. Ladd; John M. Zachara

The processes governing physical nonequilibrium (PNE)—coupled preferential flow and matrix diffusion—are diverse between humid and semi-arid regions, and are directly related to climate and rock/sediment type, and indirectly related to subsequent soil profile development. The fate and transport of contaminants in these variably saturated undisturbed media is largely a function of the influence of PNE processes. Large cores of laminated silts and sands were collected from the US Department of Energy Pacific Northwest National Laboratory (PNNL) in semi-arid south central Washington. Additional cores of weathered, fractured interbedded limestone and shale saprolite were collected from the Oak Ridge National Laboratory (ORNL) in humid eastern Tennessee. PNNL cores were collected parallel (FBP) and perpendicular (FXB) to bedding, and the ORNL core was 30° to bedding. Saturated and unsaturated transport experiments were performed using multiple nonreactive tracers that had different diffusion coefficients (Br−, PFBA, and PIPES), in order to identify the influence of PNE on the fate and transport of solutes. In the ORNL structured saprolite, solute transport was governed by coupled preferential flow and matrix diffusion, as evidenced by tracer separation and highly asymmetric breakthrough curves (BTC). BTCs became more symmetric as preferential flowpaths became inactive during drainage. Tracer separation persisted during unsaturated flow suggesting the continued importance of nonequilibrium mass transfer between flowpaths and the immobile water that was held in the soil matrix. No evidence of PNE was observed under near-saturated conditions in the semi-arid region (PNNL) laminated silts and sands. Unsaturated flow in cores with discontinuous layering resulted in preferential flow and the development of perched, immobile water as evidenced by early breakthrough and separation of tracers. Conversely, transport parallel to laterally continuous beds did not result in preferential flow, the development of perched water, or tracer separation regardless of water content. These observations suggested that desaturation had two effects: (1) grain size variations between individual beds resulted in different antecedent water contents, and (2) the exchange of water and solutes between individual sedimentary beds was subsequently inhibited. Under unsaturated conditions, these effects may promote either stable lateral flow, or unstable vertical finger flow coupled with the development of perched, immobile water.


Mbio | 2015

Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors

Mark B. Smith; Andrea M. Rocha; Chris S. Smillie; Scott W. Olesen; Charles J. Paradis; Liyou Wu; James H. Campbell; Julian L. Fortney; Tonia L. Mehlhorn; Kenneth Lowe; Jennifer E. Earles; Jana Randolph Phillips; Steve M. Techtmann; Dominique Joyner; Dwayne A. Elias; Kathryn L. Bailey; Richard A. Hurt; Sarah P. Preheim; Matthew C. Sanders; Joy Yang; Marcella A. Mueller; Scott C. Brooks; David B. Watson; Ping Zhang; Zhili He; Eric A. Dubinsky; Paul D. Adams; Adam P. Arkin; Matthew W. Fields; Jizhong Zhou

ABSTRACT Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. IMPORTANCE Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.

Collaboration


Dive into the Tonia L. Mehlhorn's collaboration.

Top Co-Authors

Avatar

David B. Watson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip M. Jardine

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott C. Brooks

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth Lowe

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Luo

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jack Carley

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Melanie A. Mayes

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge