Tony Bristow
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tony Bristow.
Rapid Communications in Mass Spectrometry | 2008
Chris Hopley; Tony Bristow; Anneke Lubben; Alec Simpson; Elaine Bull; Katerina Klagkou; Julie Herniman; John Langley
Product ion spectra produced by collision-induced dissociation (CID) in tandem mass spectrometry experiments can differ markedly between instruments. There have been a number of attempts to standardise the production of product ion spectra; however, a consensus on the most appropriate approach to the reproducible production of spectra has yet to be reached. We have previously reported the comparison of product ion spectra on a number of different types of instruments - a triple quadrupole, two ion traps and a Fourier transform ion cyclotron resonance mass spectrometer (Bristow AWT, Webb KS, Lubben AT, Halket JM. Rapid Commun. Mass Spectrom. 2004; 18: 1). The study showed that a high degree of reproducibility was achievable. The goal of this study was to improve the comparability and reproducibility of CID product ion mass spectra produced in different laboratories and using different instruments. This was carried out experimentally by defining a spectral calibration point on each mass spectrometer for product ion formation. The long-term goal is the development of a universal (instrument independent) product ion mass spectral library for the identification of unknowns. The spectra of 48 compounds have been recorded on eleven mass spectrometers: six ion traps, two triple quadrupoles, a hybrid triple quadrupole, and two quadrupole time-of-flight instruments. Initially, 4371 spectral comparisons were carried out using the data from eleven instruments and the degree of reproducibility was evaluated. A blind trial has also been carried out to assess the reproducibility of spectra obtained during LC/MS/MS. The results suggest a degree of reproducibility across all instrument types using the tuning point technique. The reproducibility of the product ion spectra is increased when comparing the tandem in time type instruments and the tandem in space instruments as two separate groups. This may allow the production of a more limited, yet useful, screening library for LC/MS/MS identification using instruments of the same type from different manufacturers.
Rapid Communications in Mass Spectrometry | 2010
Tony Bristow; Mark Harrison; Martin Sims
Accurate mass measurement (used to determine elemental formulae) is an essential tool for impurity identification in pharmaceutical development for process understanding. Accurate mass liquid chromatography/mass spectrometry (LC/MS) is used widely for these types of analyses; however, there are still many occasions when gas chromatography (GC)/MS is the appropriate technique. Therefore, the provision of robust technology to provide accurate mass GC/MS (and GC/MS/MS) for this type of activity is essential. In this report we describe the optimisation and application of a newly available atmospheric pressure chemical ionisation (APCI) interface to couple GC to time-of-flight (TOF) MS.To fully test the potential of the new interface the APCI source conditions were optimised, using a number of standard compounds, with a variety of structures, as used in synthesis at AstraZeneca. These compounds were subsequently analysed by GC/APCI-TOF MS. This study was carried out to evaluate the range of compounds that are amenable to analysis using this technique. The range of compounds that can be detected and characterised using the technique was found to be extremely broad and include apolar hydrocarbons such as toluene. Both protonated molecules ([M + H](+)) and radical cations (M(+.)) were observed in the mass spectra produced by APCI, along with additional ion signals such as [M + H + O](+).The technique has been successfully applied to the identification of impurities in reaction mixtures from organic synthesis in process development. A typical mass accuracy of 1-2 mm/zunits (m/z 80-500) was achieved allowing the reaction impurities to be identified based on their elemental formulae. These results clearly demonstrate the potential of the technique as a tool for problem solving and process understanding in pharmaceutical development. The reaction mixtures were also analysed by GC/electron ionisation (EI)-MS and GC/chemical ionisation (CI)-MS to understand the capability of GC/APCI-MS relative to these two firmly established techniques.
Rapid Communications in Mass Spectrometry | 2008
Tony Bristow; Jill Constantine; Mark Harrison; Fabien Cavoit
Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.
Rapid Communications in Mass Spectrometry | 2011
Bryan J. McCullough; Tony Bristow; Gavin O'Connor; Chris Hopley
The design and development of a novel extractive electrospray ionisation (EESI) device for on-line reaction monitoring is described. The EESI apparatus uses a secondary, grounded nebuliser to produce an analyte aerosol and a Venturi pump is then used to transfer a sample of the aerosol to an electrospray source where it is ionised. The EESI apparatus was then tested with a variety of small, organic molecules to assess sensitivity, linearity and dynamic range. The performance of the technique will depend on the mass spectrometer used for the experiments; in the configurations used here it has a usable dynamic range of around 3.5 orders of magnitude with a linear range of around 2.5 orders of magnitude and is capable of analysing species present down to low µg/mL with signal-to-noise ratio greater than 2.5. The use of EESI for reaction monitoring was validated using a series of mock reaction mixtures and then used to monitor the base hydrolysis of ethyl salicylate to salicylic acid.
Rapid Communications in Mass Spectrometry | 2009
Paul Hommerson; Amjad M. Khan; Tony Bristow; Mark Harrison; Gerhardus J. de Jong; Govert W. Somsen
Capillary electrophoresis/mass spectrometry (CE/MS) is predominantly carried out using electrospray ionization (ESI). Recently, atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) have become available for CE/MS. With the VUV lamp turned off, the APPI source may also be used for CE/MS by thermospray ionization (TSI). In the present study the suitability of ESI, APCI, APPI and TSI for drug impurity profiling by CE/MS in the positive ion mode is evaluated. The drugs carbachol, lidocaine and proguanil and their potential impurities were used as test compounds, representing different molecular polarities. A background electrolyte of 100 mM acetic acid (pH 4.5) provided baseline separation of nearly all impurities from the respective drugs. APPI yielded both even- and odd-electron ions, whereas the other ionization techniques produced even-electron ions only. In-source fragmentation was more pronounced with APCI and APPI than with ESI and TSI, which was most obvious for proguanil and its impurities. In general, ESI and TSI appeared the most efficient ionization techniques for impurities that are charged in solution achieving detection limits of 100 ng/mL (full-scan mode). APPI and APCI showed a lower efficiency, but allowed ionization of low and high polarity analytes, although quaternary ammonium compounds (e.g. carbachol) could not be detected. Largely neutral compounds, such as the lidocaine impurity 2,6-dimethylaniline, could not be detected by TSI, and yielded similar detection limits (500 ng/mL) for ESI, APPI and APCI. In many cases, impurity detection at the 0.1% (w/w) level was possible when 1 mg/mL of parent drug was injected with at least one of the CE/MS systems. Overall, the tested CE/MS systems provide complementary information as illustrated by the detection and identification of an unknown impurity in carbachol.
Journal of the American Society for Mass Spectrometry | 2014
Tony Bristow; Andrew Ray; Anne O’Kearney-McMullan; Louise Lim; Bryan McCullough; Alessio Zammataro
AbstractFor on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed. Figureᅟ
Mass Spectrometry Reviews | 2018
Andrew Ray; Tony Bristow; Chris Whitmore; Jackie A. Mosely
The application of on-line mass spectrometry for direct analysis of chemical and other types of process continues to grow in importance and impact. The ability of the technique to characterize many aspects of a chemical reaction such as product and impurity formation, along with reactant consumption in a single experiment is key to its adoption and development. Innovations in ionization techniques and mass spectrometry instrumentation are enabling this adoption. An increasing range of ambient ionization techniques make on-line mass spectrometry applicable to a large range of chemistries. The academic development and commercialization of small footprint portable/transportable mass spectrometers is providing technology that can be positioned with any process under investigation. These developments, coupled with research into new ways of sampling representatively from both the condensed and gaseous phases, are positioning mass spectrometry as an essential technology for on-line process optimization, understanding and intelligent control. It is recognized that quantitative capability of mass spectrometry in this application can cause some resistance to its adoption, but research activities to tackle this limitation are on-going.
Rapid Communications in Mass Spectrometry | 2015
Claire Lewis; Andrew Ray; Tony Bristow; Stephen A.C. Wren
RATIONALE A current challenge for analytical chemists is the development of the measurement systems and approaches required to understand dynamic processes such as tablet dissolution. The design and development of oral tablets could be improved by the availability of detailed information about the rates of release of the individual tablet components. Small footprint mass spectrometry (MS) systems are gaining use for on-line reaction monitoring because of their ability to rapidly determine multiple reactant, intermediate, and product species. We have therefore assessed the utility of such MS systems to the study of dissolution processes. METHODS Aqueous dissolution media containing phosphate and other non-volatile buffer salts were pumped from a standard USPII dissolution vessel through an active splitter and back. The splitter sampled the dissolution stream and diluted it into a make-up flow which was pumped to a small single quadrupole mass spectrometer. Single ion monitoring was used to quantify the ions of interest. Three different bio-relevant dissolution media were studied to gauge the effect of the sample matrix. RESULTS Individual dissolution profiles were obtained from a tablet containing three drugs, and lactose as the soluble filler. This was successfully demonstrated with three different bio-relevant media designed to reflect the pH of the different sections of the human gastro-intestinal tract. Component concentrations as low as 0.06 µg/mL (representing 1% dissolution) were detected. The MS dissolution profiles correlated with the visual observation of tablet dissolution. MS gave linear responses with concentration for the individual components, although analysis of the tablet solution indicated that ion suppression is an area for further investigation. CONCLUSIONS An on-line MS system was used to determine the individual dissolution profiles of three drugs and lactose as they were released from the same tablet. The level of each of these components in solution was determined every 10 seconds, and each had a similar release profile. The dissolution profiles were determined using inorganic buffer solutions at three different bio-relevant pHs.
Magnetic Resonance in Chemistry | 2017
Alexander Blanazs; Tony Bristow; Steven R. Coombes; Tom Corry; Mike Nunn; Andrew Ray
Real time online monitoring of chemical processes can be carried out by a number of analytical techniques, including optical and vibrational spectroscopies, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). As each technique has unique advantages and challenges, combinations are an attractive option. The combination of a 500‐MHz 1H NMR and a small footprint mass spectrometer to monitor a batch reaction at process concentration was investigated. The mass spectrometer was coupled into the flow path of an online reaction monitoring NMR. Reaction mixture was pumped from a 100‐ml vessel to an NMR flow tube before returning to the vessel. Small aliquots were diverted into a sampling make‐up flow using an active flow splitter and passed to the mass spectrometer. Advantages of the combination were observed. 1H NMR was ideal for quantitation of high level components, whereas MS showed a greater capability for detecting those at low level. In preliminary experiments MS produced a limited linear relationship with concentration (0.02% to 2% relative concentration, 0.01 mg/ml–1.25 mg/ml), because of signal saturation at the higher concentrations. NMR was unable to detect components below 0.1% relative to concentration maximum. Optimisation of sample transfer to the MS extended the linearity to 10% relative to the concentration maximum. Therefore, the combination of online NMR and MS allows both qualitative and quantitative analysis of reaction components over the full process range. The application of the combination was demonstrated by monitoring a batch chemical reaction and this is described. Copyright
Analytical Chemistry | 2007
Paul Hommerson; Amjad M. Khan; Tony Bristow; W.M.A. Niessen; de G.T. Jong; Govert W. Somsen