Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony J. Kenna is active.

Publication


Featured researches published by Tony J. Kenna.


Scopus | 2011

Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility

David Evans; Alexander Dilthey; M. Pirinen; Tetyana Zayats; C. C. A. Spencer; Z. Su; Céline Bellenguez; Colin Freeman; Amy Strange; Gilean McVean; Peter Donnelly; J. J. Pointon; David Harvey; L. H. Appleton; T. Wordsworth; Tugce Karaderi; C Farrar; Paul Bowness; B. P. Wordsworth; Grazyna Kochan; U. Opperman; M Stone; L. Moutsianis; Stephen Leslie; Tony J. Kenna; Gethin P. Thomas; Linda A. Bradbury; Patrick Danoy; Matthew A. Brown; M. Ward

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10−8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10−6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27–positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.


Nature Genetics | 2013

Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci

Adrian Cortes; Johanna Hadler; Jenny P. Pointon; Philip C. Robinson; Tugce Karaderi; Paul Leo; Katie Cremin; Karena Pryce; Jessica Harris; Seunghun Lee; Kyung Bin Joo; Seung Cheol Shim; Michael H. Weisman; Michael M. Ward; Xiaodong Zhou; Henri Jean Garchon; Gilles Chiocchia; Johannes Nossent; Benedicte A. Lie; Øystein Førre; Jaakko Tuomilehto; Kari Laiho; Lei Jiang; Yu Liu; Xin Wu; Linda A. Bradbury; Dirk Elewaut; Ruben Burgos-Vargas; Simon Stebbings; L. H. Appleton

Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis–associated haplotypes at 11 loci. Two ankylosing spondylitis–associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.


Journal of Immunology | 2003

NKT Cells from Normal and Tumor-Bearing Human Livers Are Phenotypically and Functionally Distinct from Murine NKT Cells

Tony J. Kenna; Lucy Golden Mason; Steven A. Porcelli; Yasuhiko Koezuka; J. Hegarty; Cliona O'Farrelly; Derek G. Doherty

A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.


Arthritis & Rheumatism | 2012

Enrichment of circulating interleukin‐17–secreting interleukin‐23 receptor–positive γ/δ T cells in patients with active ankylosing spondylitis

Tony J. Kenna; Stuart I. Davidson; Ran Duan; Linda A. Bradbury; Janelle McFarlane; Malcolm D. Smith; Helen Weedon; Shayna Street; Ranjeny Thomas; Gethin P. Thomas; Matthew A. Brown

OBJECTIVE Ankylosing spondylitis (AS) is a common inflammatory arthritis affecting primarily the axial skeleton. IL23R is genetically associated with AS. This study was undertaken to investigate and characterize the role of interleukin-23 (IL-23) signaling in AS pathogenesis. METHODS The study population consisted of patients with active AS (n = 17), patients with psoriatic arthritis (n = 8), patients with rheumatoid arthritis, (n = 9), and healthy subjects (n = 20). IL-23 receptor (IL-23R) expression in T cells was determined in each subject group, and expression levels were compared. RESULTS The proportion of IL-23R-expressing T cells in the periphery was 2-fold higher in AS patients than in healthy controls, specifically driven by a 3-fold increase in IL-23R-positive γ/δ T cells in AS patients. The proportions of CD4+ and CD8+ cells that were positive for IL-17 were unchanged. This increased IL-23R expression on γ/δ T cells was also associated with enhanced IL-17 secretion, with no observable IL-17 production from IL-23R-negative γ/δ T cells in AS patients. Furthermore, γ/δ T cells from AS patients were heavily skewed toward IL-17 production in response to stimulation with IL-23 and/or anti-CD3/CD28. CONCLUSION Recently, mouse models have shown IL-17-secreting γ/δ T cells to be pathogenic in infection and autoimmunity. Our data provide the first description of a potentially pathogenic role of these cells in a human autoimmune disease. Since IL-23 is a maturation and growth factor for IL-17-producing cells, increased IL-23R expression may regulate the function of this putative pathogenic γ/δ T cell population.


Arthritis & Rheumatism | 2014

Intestinal dysbiosis in ankylosing spondylitis.

Mary-Ellen Costello; Francesco Ciccia; Dana Willner; Nicole M. Warrington; Philip C. Robinson; Brooke Gardiner; Mhairi Marshall; Tony J. Kenna; Giovanni Triolo; Matthew A. Brown

Ankylosing spondylitis (AS) is a common, highly heritable immune‐mediated arthropathy that occurs in genetically susceptible individuals exposed to an unknown but likely ubiquitous environmental trigger. There is a close relationship between the gut and spondyloarthritis, as exemplified in patients with reactive arthritis, in whom a typically self‐limiting arthropathy follows either a gastrointestinal or urogenital infection. Microbial involvement in AS has been suggested; however, no definitive link has been established. The aim of this study was to determine whether the gut in patients with AS carries a distinct microbial signature compared with that in the gut of healthy control subjects.


Arthritis & Rheumatism | 2015

Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis

Mary-Ellen Costello; Francesco Ciccia; Dana Willner; Nicole M. Warrington; Philip C. Robinson; Brooke Gardiner; Mhairi Marshall; Tony J. Kenna; Giovanni Triolo; Matthew A. Brown

Ankylosing spondylitis (AS) is a common, highly heritable immune‐mediated arthropathy that occurs in genetically susceptible individuals exposed to an unknown but likely ubiquitous environmental trigger. There is a close relationship between the gut and spondyloarthritis, as exemplified in patients with reactive arthritis, in whom a typically self‐limiting arthropathy follows either a gastrointestinal or urogenital infection. Microbial involvement in AS has been suggested; however, no definitive link has been established. The aim of this study was to determine whether the gut in patients with AS carries a distinct microbial signature compared with that in the gut of healthy control subjects.


Nature Reviews Rheumatology | 2016

Genetics of ankylosing spondylitis--insights into pathogenesis.

Matthew A. Brown; Tony J. Kenna; B. Paul Wordsworth

Ankylosing spondylitis (AS), an immune-mediated arthritis, is the prototypic member of a group of conditions known as spondyloarthropathies that also includes reactive arthritis, psoriatic arthritis and enteropathic arthritis. Patients with these conditions share a clinical predisposition for spinal and pelvic joint dysfunction, as well as genetic associations, notably with HLA-B*27. Spondyloarthropathies are characterized by histopathological inflammation in entheses (regions of high mechanical stress where tendons and ligaments insert into bone) and in the subchondral bone marrow, and by abnormal osteoproliferation at involved sites. The association of AS with HLA-B*27, first described >40 years ago, led to hope that the cause of the disease would be rapidly established. However, even though many theories have been advanced to explain how HLA-B*27 is involved in AS, no consensus about the answers to this question has been reached, and no successful treatments have yet been developed that target HLA-B27 or its functional pathways. Over the past decade, rapid progress has been made in discovering further genetic associations with AS that have shed new light on the aetiopathogenesis of the disease. Some of these discoveries have driven translational ideas, such as the repurposing of therapeutics targeting the cytokines IL-12 and IL-23 and other factors downstream of this pathway. AS provides an excellent example of how hypothesis-free research can lead to major advances in understanding pathogenesis and to the development of innovative therapeutic strategies.


PLOS Genetics | 2011

Whole-Exome Re-Sequencing in a Family Quartet Identifies POP1 Mutations As the Cause of a Novel Skeletal Dysplasia

Evgeny A. Glazov; Andreas Zankl; Marina Donskoi; Tony J. Kenna; Gethin P. Thomas; Graeme R. Clark; Emma L. Duncan; Matthew A. Brown

Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095), a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP) complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia.


British Journal of Cancer | 2005

A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia

William M. Gallagher; L. T. Allen; C. O'Shea; Tony J. Kenna; Michael J. Hall; Aoife Gorman; John Killoran; Donal F. O'Shea

We have developed a totally new class of nonporphyrin photodynamic therapeutic agents with a specific focus on two lead candidates azadipyrromethene (ADPM)01 and ADPM06. Confocal laser scanning microscopy imaging showed that these compounds are exclusively localised to the cytosolic compartment, with specific accumulation in the endoplasmic reticulum and to a lesser extent in the mitochondria. Light-induced toxicity assays, carried out over a broad range of human tumour cell lines, displayed EC50 values in the micro-molar range for ADPM01 and nano-molar range for ADPM06, with no discernable activity bias for a specific cell type. Strikingly, the more active agent, ADPM06, even retained significant activity under hypoxic conditions. Both photosensitisers showed low to nondeterminable dark toxicity. Flow cytometric analysis revealed that ADPM01 and ADPM06 were highly effective at inducing apoptosis as a mode of cell death. The photophysical and biological characteristics of these PDT agents suggest that they have potential for the development of new anticancer therapeutics.


Arthritis Research & Therapy | 2013

Microbes, the gut and ankylosing spondylitis

Mary-Ellen Costello; Dirk Elewaut; Tony J. Kenna; Matthew A. Brown

It is increasingly clear that the interaction between host and microbiome profoundly affects health. There are 10 times more bacteria in and on our bodies than the total of our own cells, and the human intestine contains approximately 100 trillion bacteria. Interrogation of microbial communities by using classic microbiology techniques offers a very restricted view of these communities, allowing us to see only what we can grow in isolation. However, recent advances in sequencing technologies have greatly facilitated systematic and comprehensive studies of the role of the microbiome in human health and disease. Comprehensive understanding of our microbiome will enhance understanding of disease pathogenesis, which in turn may lead to rationally targeted therapy for a number of conditions, including autoimmunity.

Collaboration


Dive into the Tony J. Kenna's collaboration.

Top Co-Authors

Avatar

Matthew A. Brown

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Keith

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Max C. Lau

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Ranjeny Thomas

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Paul Leo

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge