Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony M. Callaghan is active.

Publication


Featured researches published by Tony M. Callaghan.


Molecular Ecology | 2013

Towards a unified paradigm for sequence‐based identification of fungi

Urmas Kõljalg; R. Henrik Nilsson; Kessy Abarenkov; Leho Tedersoo; Andy F. S. Taylor; Mohammad Bahram; Scott T. Bates; Thomas D. Bruns; Johan Bengtsson-Palme; Tony M. Callaghan; Brian Douglas; Tiia Drenkhan; Ursula Eberhardt; Margarita Dueñas; Tine Grebenc; Gareth W. Griffith; Martin Hartmann; Paul M. Kirk; Petr Kohout; Ellen Larsson; Björn D. Lindahl; Robert Lücking; María P. Martín; P. Brandon Matheny; Nhu H. Nguyen; Tuula Niskanen; Jane Oja; Kabir G. Peay; Ursula Peintner; Marko Peterson

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third‐party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web‐based sequence management system in UNITE.


Advances in Biochemical Engineering \/ Biotechnology | 2015

Anaerobic Fungi and Their Potential for Biogas Production

Dollhofer; Sabine Marie Podmirseg; Tony M. Callaghan; Gareth W. Griffith; K. Fliegerová

Plant biomass is the largest reservoir of environmentally friendly renewable energy on earth. However, the complex and recalcitrant structure of these lignocellulose-rich substrates is a severe limitation for biogas production. Microbial pro-ventricular anaerobic digestion of ruminants can serve as a model for improvement of converting lignocellulosic biomass into energy. Anaerobic fungi are key players in the digestive system of various animals, they produce a plethora of plant carbohydrate hydrolysing enzymes. Combined with the invasive growth of their rhizoid system their contribution to cell wall polysaccharide decomposition may greatly exceed that of bacteria. The cellulolytic arsenal of anaerobic fungi consists of both secreted enzymes, as well as extracellular multi-enzyme complexes called cellulosomes. These complexes are extremely active, can degrade both amorphous and crystalline cellulose and are probably the main reason of cellulolytic efficiency of anaerobic fungi. The synergistic use of mechanical and enzymatic degradation makes anaerobic fungi promising candidates to improve biogas production from recalcitrant biomass. This chapter presents an overview about their biology and their potential for implementation in the biogas process.


Fungal Biology | 2015

A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius)

Sumit Singh Dagar; Sanjay Kumar; Gareth W. Griffith; Joan E. Edwards; Tony M. Callaghan; Rameshwar Singh; Ashok K. Nagpal; Anil Kumar Puniya

Two cultures of anaerobic fungi were isolated from the forestomach of an Indian camel (Camelus dromedarius). Phylogenetic analysis using both the internal transcribed spacer (ITS) and large-subunit (LSU) regions of the rRNA locus demonstrated that these isolates were identical and formed a distinct clade within the anaerobic fungi (phylum Neocallimastigomycota). Morphological examination showed that these fungi formed monocentric thalli with filamentous rhizoids and uniflagellate zoospores, broadly similar to members of the genus Piromyces. However, distinctive morphological features were observed, notably the pinching of the cytoplasm in the sporangiophore and the formation of intercalary rhizoidal swellings. Since genetic analyses demonstrated this fungus was only distantly related to Piromyces spp. and closer to the polycentric Anaeromyces clade, we have assigned it to a new genus and species Oontomyces anksri gen. nov., sp. nov. Interrogation of the GenBank database identified several closely related ITS sequences, which were all environmental sequences obtained from camels, raising the possibility that this fungus may be specific to camelids.


Frontiers in Microbiology | 2017

PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities

Joan E. Edwards; Robert J. Forster; Tony M. Callaghan; Veronika Dollhofer; Sumit S. Dagar; Yanfen Cheng; Jong-Soo Chang; Sandra Kittelmann; Katerina Fliegerova; Anil Kumar Puniya; John K. Henske; Sean P. Gilmore; Michelle A. O'Malley; Gareth W. Griffith; Hauke Smidt

Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.


Bioresource Technology | 2017

Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants

Veronika Dollhofer; Tony M. Callaghan; Gareth W. Griffith; Michael Lebuhn; Johann Bauer

Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity.


Journal of Microbiological Methods | 2016

Development of three specific PCR-based tools to determine quantity, cellulolytic transcriptional activity and phylogeny of anaerobic fungi

Veronika Dollhofer; Tony M. Callaghan; Samart Dorn-In; Johann Bauer; Michael Lebuhn

Anaerobic fungi (AF) decompose plant material with their rhizoid and multiple cellulolytic enzymes. They disintegrate the complex structure of lignocellulosic substrates, making them more accessible and suitable for further microbial degradation. There is also much interest in their use as biocatalysts for biotechnological applications. Here, three novel polymerase chain reaction (PCR)-based methods for detecting AF and their transcriptional activity in in vitro cultures and environmental samples were developed. Two real-time quantitative PCR (qPCR)-based methods targeting AF were developed: AF-SSU, was designed to quantify the 18S rRNA genes of AF. AF-Endo, measuring transcripts of an endoglucanase gene from the glycoside hydrolase family 5 (GH5), was developed to quantify their transcriptional cellulolytic activity. The third PCR based approach was designed for phylogenetical analysis. It targets the 28S rRNA gene (LSU) of AF revealing their phylogenetic affiliation. The in silico-designed primer/probe combinations were successfully tested for the specific amplification of AF from animal and biogas plant derived samples. In combination, these three methods represent useful tools for the analysis of AF transcriptional cellulolytic activity, their abundance and their phylogenetic placement.


MycoKeys | 2018

Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat

Akshay Joshi; Vikram Lanjekar; Prashant K. Dhakephalkar; Tony M. Callaghan; Gareth W. Griffith; Sumit Singh Dagar

Abstract An extended incubation strategy to culture slow growing members of anaerobic fungi resulted in the isolation of a novel anaerobic fungus from the rumen of a goat after 15 days. The novel genus, represented by type strain G1SC, showed filamentous monocentric thallus development and produced uniflagellate zoospores, hence, showing morphological similarity to the genera Piromyces, Buwchfawromyces, Oontomyces and Pecoramyces. However, strain G1SC showed genetic similarity to the genus Anaeromyces, which, though produces uniflagellate zoospore, also exhibits polycentric thallus development. Moreover, unlike Anaeromyces, strain G1SC did not show hyphal constrictions, instead produced a branched, determinate and anucleate rhizoidal system. This fungus also displayed extensive sporangial variations, both exogenous and endogenous type of development, short and long sporangiophores and produced septate sporangia. G1SC utilised various complex and simple substrates, including rice straw and wheat straw and produced H2, CO2, formate, acetate, lactate, succinate and ethanol. Phylogenetic analysis, using internal transcribed spacer 1 (ITS1) and D1/D2 domain of large-subunit (LSU) rRNA locus, clearly showed a separate lineage for this strain, near Anaeromyces. The ITS1 based geographical distribution studies indicated detection of environmental sequences similar (93–96%) to this strain from cattle faeces. Based on morphological and molecular characterisation results of strain G1SC, we propose a novel anaerobic fungus Liebetanzomycespolymorphusgen. et sp. nov., in the phylum Neocallimastigomycota.


Bioresource Technology | 2018

Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants

Diana Young; Veronika Dollhofer; Tony M. Callaghan; Stefan Reitberger; M. Lebuhn; J. Philipp Benz

Aerobic and anaerobic fungi are among the most effective plant biomass degraders known and have high potential to increase the efficiency of lignocellulosic biomass utilization, such as for biogas generation. However, limited information is available on their contribution to such industrial processes. Therefore, the presence of fungi along the biogas production chain of one-phase and two-phase biogas plants in Germany was analyzed. Seventeen aerobic species of Zygomycota, Ascomycota and Basidiomycota were identified, including efficient producers of lignocellulases, such as Trichoderma capillare isolated from a hydrolysis tank and Coprinopsis cinerea from fibers separated from pressed digestate. Five anaerobic fungal species of the phylum Neocallimastigomycota (comprising two novel clades) were present in an slightly acidic fermenter of a biogas plant fed with cow manure displaying endoglucanase transcriptional activity. The broad fungal presence demonstrated in this study can serve developing bioaugmentation systems with relevant lignocellulolytic fungi to improve biogas production from recalcitrant fiber material.


FEMS Microbiology Ecology | 2014

Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential.

Robert J. Gruninger; Anil Kumar Puniya; Tony M. Callaghan; Joan E. Edwards; Noha H. Youssef; Sumit S. Dagar; Katerina Fliegerova; Gareth W. Griffith; Robert J. Forster; Adrian Tsang; Tim A. McAllister; Mostafa S. Elshahed


MycoKeys | 2015

Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces

Tony M. Callaghan; Sabine Marie Podmirseg; Daniel Hohlweck; Joan E. Edwards; Anil Kumar Puniya; Sumit Singh Dagar; Gareth W. Griffith

Collaboration


Dive into the Tony M. Callaghan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Kumar Puniya

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sumit Singh Dagar

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Akshay Joshi

Agharkar Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sumit S. Dagar

Agharkar Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vikram Lanjekar

Agharkar Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Lebuhn

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge