Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Pham is active.

Publication


Featured researches published by Tony Pham.


Nature | 2013

Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation

Patrick Nugent; Youssef Belmabkhout; Stephen D. Burd; Amy J. Cairns; Ryan Luebke; Katherine A. Forrest; Tony Pham; Shengqian Ma; Brian Space; Lukasz Wojtas; Mohamed Eddaoudi; Michael J. Zaworotko

The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases; in addition to its involvement in climate change, CO2 is an impurity in natural gas, biogas (natural gas produced from biomass), syngas (CO/H2, the main source of hydrogen in refineries) and many other gas streams. In the context of porous crystalline materials that can exploit both equilibrium and kinetic selectivity, size selectivity and targeted molecular recognition are attractive characteristics for CO2 separation and capture, as exemplified by zeolites 5A and 13X (ref. 2), as well as metal–organic materials (MOMs). Here we report that a crystal engineering or reticular chemistry strategy that controls pore functionality and size in a series of MOMs with coordinately saturated metal centres and periodically arrayed hexafluorosilicate (SiF62−) anions enables a ‘sweet spot’ of kinetics and thermodynamics that offers high volumetric uptake at low CO2 partial pressure (less than 0.15 bar). Most importantly, such MOMs offer an unprecedented CO2 sorption selectivity over N2, H2 and CH4, even in the presence of moisture. These MOMs are therefore relevant to CO2 separation in the context of post-combustion (flue gas, CO2/N2), pre-combustion (shifted synthesis gas stream, CO2/H2) and natural gas upgrading (natural gas clean-up, CO2/CH4).


Journal of the American Chemical Society | 2014

Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane

Baiyan Li; Yiming Zhang; Rajamani Krishna; Kexin Yao; Yu Han; Zili Wu; Dingxuan Ma; Zhan Shi; Tony Pham; Brian Space; Jian Liu; Praveen K. Thallapally; Jun Liu; Matthew Chrzanowski; Shengqian Ma

In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane.


Journal of the American Chemical Society | 2013

A Robust Molecular Porous Material with High CO2 Uptake and Selectivity

Patrick Nugent; Vanessah Rhodus; Tony Pham; Katherine A. Forrest; Lukasz Wojtas; Brian Space; Michael J. Zaworotko

We report MPM-1-TIFSIX, a molecular porous material (MPM) based upon the neutral metal complex [Cu2(adenine)4(TiF6)2], that self-assembles through a hydrogen-bonding network. This MPM is amenable to room-temperature synthesis and activation. Gas adsorption measurements and ideal adsorbed solution theory selectivity predictions at 298 K revealed enhanced CO2 separation performance relative to a previously known variant as well as the highest CO2 uptake and isosteric heat of adsorption yet reported for an MPM. MPM-1-TIFSIX is thermally stable to 568 K and retains porosity and capacity even after immersion in water for 24 h.


Journal of the American Chemical Society | 2014

Putting the squeeze on CH4 and CO2 through control over interpenetration in diamondoid nets.

Sameh K. Elsaidi; Mona H. Mohamed; Lukasz Wojtas; Anjana Chanthapally; Tony Pham; Brian Space; Jagadese J. Vittal; Michael J. Zaworotko

We report the synthesis, structure, and sorption properties of a family of eight diamondoid (dia) metal-organic materials (MOMs) that are sustained by Co(II) or Zn(II) cations linked by one of three rigid ligands: 4-(2-(4-pyridyl)ethenyl)benzoate (1), 4-(pyridin-4-yl)benzoate (2), and 4-(pyridin-4-yl)acrylate (3). Pore size control in this family of dia nets was exerted by two approaches: changing the length of the linker ligand from 1 to 3, and using solvent as a template to control the level of interpenetration in nets based upon 1 and 3. The resulting MOMs, dia-8i-1, dia-5i-3, dia-7i-1-Zn, dia-7i-1-Co, dia-4i-3-a, dia-4i-3-b, dia-4i-2, and dia-4i-1, exhibit 1D channels with pore limiting diameters (PLDs) of 1.64, 2.90, 5.06, 5.28, 8.57, 8.83, 11.86, and 18.25 Å, respectively. We selected dia nets for this study for the following reasons: their 1D channels facilitate study of the impact of pore size on gas sorption parameters in situations where pore chemistry is similar (pyridyl benzoate-type linkers) or identical (in the case of polymorphs), and their saturated metal centers eliminate open metal sites from dominating sorbent-solvate interactions and possibly masking the effect of pore size. Our data reveal that smaller pore sizes offer stronger interactions, as determined by the isosteric heat of adsorption (Qst) and the steepness of the adsorption isotherm in the low-pressure region. The porous MOM with the smallest PLD suitable for physisorption, dia-7i-1-Co, was thereby found to exhibit the highest Qst values for CO2 and CH4. Indeed, dia-7i-1-Co exhibits a Qst for CH4 of 26.7 kJ/mol, which was validated through grand canonical Monte Carlo simulation studies of CH4 adsorption. This Qst value is considerably higher than those found in covalent organic frameworks and other MOMs with unsaturated metal centers. These results therefore further validate the critical role that PLD plays in gas adsorption by porous MOMs.


Angewandte Chemie | 2016

Tuning Pore Size in Square‐Lattice Coordination Networks for Size‐Selective Sieving of CO2

Kai-Jie Chen; David G. Madden; Tony Pham; Katherine A. Forrest; Amrit Kumar; Qing-Yuan Yang; Wei Xue; Brian Space; John J. Perry; Jie-Peng Zhang; Xiao-Ming Chen; Michael J. Zaworotko

Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity.


Angewandte Chemie | 2016

Hybrid Ultra‐Microporous Materials for Selective Xenon Adsorption and Separation

Mona H. Mohamed; Sameh K. Elsaidi; Tony Pham; Katherine A. Forrest; Herbert T. Schaef; Adam Hogan; Lukasz Wojtas; Wenqian Xu; Brian Space; Michael J. Zaworotko; Praveen K. Thallapally

The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, less energy intensive alternatives, such as physisorptive separation, using porous materials, are required. Herein we show that an underexplored class of porous materials called hybrid ultra-microporous materials (HUMs) affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that have coordinatively saturated metal centers and two distinct types of micropores, one of which is lined by CrO4 (2-) (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe. Modelling indicates that the selectivity of these nets is tailored by synergy between the pore size and the strong electrostatics afforded by the CrO4 (2-) anions.


Journal of Chemical Theory and Computation | 2013

A Polarizable and Transferable PHAST CO2 Potential for Materials Simulation

Ashley Mullen; Tony Pham; Katherine A. Forrest; Christian R. Cioce; Keith McLaughlin; Brian Space

Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parametrized from nearly exact electronic structure calculations. Models with and without explicit many-body polarization effects, known to be important in simulation of interfacial processes, are constructed. The models have been validated on pressure-density isotherms of bulk CO2 and adsorption in three metal-organic framework (MOF) materials. The present models appear to offer advantages over high quality fluid/liquid state potentials in describing CO2 interactions in interfacial environments where sorbates adopt orientations not commonly explored in bulk fluids. Thus, the nonpolar CO2-PHAST and polarizable CO2-PHAST* potentials are recommended for materials/interfacial simulations.


Chemical Communications | 2015

Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas

Sameh K. Elsaidi; Mona H. Mohamed; Herbert T. Schaef; Amrit Kumar; Matteo Lusi; Tony Pham; Katherine A. Forrest; Brian Space; Wenqian Xu; Gregory J. Halder; Jun Liu; Michael J. Zaworotko; Praveen K. Thallapally

Capture of CO2 from flue gas is considered to be a feasible approach to mitigate the effects of anthropogenic emission of CO2. Herein we report that an isostructural family of metal organic materials (MOMs) of general formula [M(linker)2(pillar)], linker = pyrazine, pillar = hexaflourosilicate and M = Zn, Cu, Ni and Co exhibits highly selective removal of CO2 from dry and wet simulated flue gas. Two members of the family, M = Ni and Co, SIFSIX-3-Ni and SIFSIX-3-Co, respectively, are reported for the first time and compared with the previously reported Zn and Cu analogs.


Journal of Materials Chemistry | 2014

Simulations of hydrogen sorption in rht-MOF-1: identifying the binding sites through explicit polarization and quantum rotation calculations

Tony Pham; Katherine A. Forrest; Adam Hogan; Keith McLaughlin; Jonathan L. Belof; Juergen Eckert; Brian Space

Grand canonical Monte Carlo (GCMC) simulations of hydrogen sorption were performed in rht-MOF-1, a metal–organic framework (MOF) that consists of isophthalate groups joined by copper paddlewheel clusters and Cu3O trimers through tetrazolate moeities. This is a charged rht-MOF that contains extra-framework nitrate counterions within the material. For the simulations performed herein, excellent agreement with experiment was achieved for the simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values only when using a polarizable potential. Thermodynamic agreement is demonstrated via comparing to experimental isotherms and binding sites are revealed by combining simulation and inelastic neutron scattering (INS) data. Simulations involving explicit many-body polarization interactions assisted in the determination of the binding sites in rht-MOF-1 through the distribution of the induced dipoles that led to strong adsorbate interactions. Four distinct hydrogen sorption sites were determined from the polarization distribution: the nitrate ions located in the corners of the truncated tetrahedral cages, the Cu2+ ions of the paddlewheels that project into the truncated tetrahedral and truncated octahedral cages (Cu1 ions), the Cu2+ ions of the Cu3O trimers (Cu3 ions), and the sides of the paddlewheels in the cuboctahedral cage. The simulations revealed that the initial sorption sites for hydrogen in rht-MOF-1 are the nitrate ions; this site corresponds to the high initial Qst value for hydrogen (9.5 kJ mol−1) in the MOF. The radial distribution functions, g(r), about the Cu2+ ions at various loadings revealed that the Cu1 ions are the preferred open-metal sorption sites for hydrogen at low loading, while the Cu3 ions become occupied at higher loadings. The validation of the aforementioned sorption sites in rht-MOF-1 was confirmed by calculating the two-dimensional quantum rotational levels about each site and comparing the levels to the transitions that were observed in the experimental INS spectra for hydrogen in the compound. For each binding site, the rotational transitions from j = 0 to j = 1 were in good agreement to certain transitions that were observed in the INS spectra. From these calculations, the assignment of the peaks in the INS spectra for hydrogen in rht-MOF-1 has been made.


Journal of Chemical Physics | 2013

Efficient calculation of many-body induced electrostatics in molecular systems

Keith McLaughlin; Christian R. Cioce; Tony Pham; Jonathan L. Belof; Brian Space

Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and Applequist, while long-ranged, can be computed for moderate-sized periodic systems with extremely high accuracy by extending Ewald summation to the induced fields as demonstrated by Nymand, Sala, and others. These full Ewald polarization calculations, however, are expensive and often limited to very small systems, particularly in Monte Carlo simulations, which may require energy evaluation over several hundred-thousand configurations. For such situations, it shall be shown that sufficiently accurate computation of the polarization energy can be produced in a fraction of the central processing unit (CPU) time by neglecting the long-range extension to the induced fields while applying the long-range treatments of Ewald or Wolf to the static fields; these methods, denoted Ewald E-Static and Wolf E-Static (WES), respectively, provide an effective means to obtain polarization energies for intermediate and large systems including those with several thousand polarizable sites in a fraction of the CPU time. Furthermore, we shall demonstrate a means to optimize the damping for WES calculations via extrapolation from smaller trial systems.

Collaboration


Dive into the Tony Pham's collaboration.

Top Co-Authors

Avatar

Brian Space

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juergen Eckert

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Lukasz Wojtas

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Adam Hogan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Keith McLaughlin

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Shengqian Ma

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Patrick Nugent

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge