Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony W. H. Li is active.

Publication


Featured researches published by Tony W. H. Li.


Molecular Cancer Therapeutics | 2005

Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine

Jody C. Chuang; Christine B. Yoo; Jennifer M. Kwan; Tony W. H. Li; Gangning Liang; Allen S. Yang; Peter A. Jones

DNA cytosine methylation plays a considerable role in normal development, gene regulation, and carcinogenesis. Hypermethylation of the promoters of some tumor suppressor genes and the associated silencing of these genes often occur in certain cancer types. The reversal of this process by DNA methylation inhibitors is a promising new strategy for cancer therapy. In addition to the four well-characterized nucleoside analogue methylation inhibitors, 5-azacytidine, 5-aza-2′-deoxycytidine (5-Aza-CdR), 5-fluoro-2′-deoxycytidine, and zebularine, there is a growing list of non-nucleoside inhibitors. However, a systemic study comparing these potential demethylating agents has not been done. In this study, we examined three non-nucleoside demethylating agents, (−)-epigallocatechin-3-gallate, hydralazine, and procainamide, and compared their effects and potencies with 5-Aza-CdR, the most potent DNA methylation inhibitor. We found that 5-Aza-CdR is far more effective in DNA methylation inhibition as well as in reactivating genes, compared with non-nucleoside inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival

Gerda Egger; Shinwu Jeong; Sonia G. Escobar; Connie C. Cortez; Tony W. H. Li; Yoshimasa Saito; Christine B. Yoo; Peter A. Jones; Gangning Liang

Previous studies have shown that DNA methyltransferase (Dnmt) 1 is required for maintenance of bulk DNA methylation and is essential for mouse development. However, somatic disruption of DNMT1 in the human cancer cell line HCT116 was not lethal and caused only minor decreases in methylation. Here, we report the identification of a truncated DNMT1 protein, which was generated by the disruption of DNMT1 in HCT116 cells. The truncated protein, which had parts of the regulatory N-terminal domain deleted but preserved the catalytic C-terminal domain, was present at different levels in all DNMT1 single-knockout and DNMT1/DNMT3b double-knockout cell lines tested and retained hemimethylase activity. DNMT1 RNAi resulted in decreased cell viability in WT and knockout cells and further loss of DNA methylation in DNMT1 knockout cells. Furthermore, we observed a delay in methylation after replication and an increase in hemimethylation of specific CpG sites in cells expressing the truncated protein. Remethylation studies after drug-induced hypomethylation suggest a putative role of DNMT1 in the de novo methylation of a subtelomeric repeat, D4Z4, which is lost in cells lacking full-length DNMT1. Our data suggest that DNMT1 might be essential for maintenance of DNA methylation, proliferation, and survival of cancer cells.


Journal of Clinical Investigation | 2013

MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma

Heping Yang; Michele E. Cho; Tony W. H. Li; Hui Peng; Kwang Suk Ko; José M. Mato; Shelly C. Lu

MicroRNAs (miRNAs) and methionine adenosyltransferase 1A (MAT1A) are dysregulated in hepatocellular carcinoma (HCC), and reduced MAT1A expression correlates with worse HCC prognosis. Expression of miR-664, miR-485-3p, and miR-495, potential regulatory miRNAs of MAT1A, is increased in HCC. Knockdown of these miRNAs individually in Hep3B and HepG2 cells induced MAT1A expression, reduced growth, and increased apoptosis, while combined knockdown exerted additional effects on all parameters. Subcutaneous and intraparenchymal injection of Hep3B cells stably overexpressing each of this trio of miRNAs promoted tumorigenesis and metastasis in mice. Treatment with miRNA-664 (miR-664), miR-485-3p, and miR-495 siRNAs reduced tumor growth, invasion, and metastasis in an orthotopic liver cancer model. Blocking MAT1A induction significantly reduced the antitumorigenic effect of miR-495 siRNA, whereas maintaining MAT1A expression prevented miRNA-mediated enhancement of growth and metastasis. Knockdown of these miRNAs increased total and nuclear level of MAT1A protein, global CpG methylation, lin-28 homolog B (Caenorhabditis elegans) (LIN28B) promoter methylation, and reduced LIN28B expression. The opposite occurred with forced expression of these miRNAs. In conclusion, upregulation of miR-664, miR-485-3p, and miR-495 contributes to lower MAT1A expression in HCC, and enhanced tumorigenesis may provide potential targets for HCC therapy.


Molecular and Cellular Biology | 2006

Wnt activation and alternative promoter repression of LEF1 in colon cancer.

Tony W. H. Li; Ju-Hui T. Ting; Noriko N. Yokoyama; Alla Bernstein; Marc van de Wetering; Marian L. Waterman

ABSTRACT Alternative promoters within the LEF1 locus produce polypeptides of opposing biological activities. Promoter 1 produces full-length LEF-1 protein, which recruits β-catenin to Wnt target genes. Promoter 2 produces a truncated form that cannot interact with β-catenin and instead suppresses Wnt regulation of target genes. Here we show that promoter 1 is aberrantly activated in colon cancers because it is a direct target of the Wnt pathway. T-cell factor (TCF)-β-catenin complexes bind to Wnt response elements in exon 1 and dynamically regulate chromatin acetylation and promoter 1 activity. Promoter 2 is delimited to the intron 2/exon 3 boundary and, like promoter 1, is also directly regulated by TCF-β-catenin complexes. Promoter 2 is nevertheless silent in colon cancer because an upstream repressor selectively targets the basal promoter leading to destabilized TCF-β-catenin binding. We conclude that the biological outcome of aberrant LEF1 activation in colon cancer is directed by differential promoter activation and repression.


Gastroenterology | 2011

A Mouse Model of Cholestasis-Associated Cholangiocarcinoma and Transcription Factors Involved in Progression

Heping Yang; Tony W. H. Li; Jian Peng; Xiaoli Tang; Kwang Suk Ko; Meng Xia; María Ángeles Aller

BACKGROUND & AIMS Cholestasis contributes to hepatocellular injury and promotes liver carcinogenesis. We created a mouse model of chronic cholestasis to study its effects on progression of cholangiocarcinoma and the oncogenes involved. METHODS To induce chronic cholestasis, Balb/c mice were given 2 weekly intraperitoneal injections of diethylnitrosamine (DEN); 2 weeks later, some mice also received left and median bile duct ligation (LMBDL) and, then 1 week later, were fed DEN, in corn oil, weekly by oral gavage (DLD). Liver samples were analyzed by immunohistochemical and biochemical assays; expression of Mnt and c-Myc was reduced by injection of small inhibitor RNAs. RESULTS Chronic cholestasis was induced by DLD and accelerated progression of cholangiocarcinoma, compared with mice given only DEN. Cystic hyperplasias, cystic atypical hyperplasias, cholangiomas, and cholangiocarcinoma developed in the DLD group at weeks 8, 12, 16, and 28, respectively. LMBDL repressed expression of microRNA (miR)-34a and let-7a, up-regulating Lin-28B, hypoxia-inducible factor (HIF)-1α, HIF-2α, and miR-210. Up-regulation of Lin-28B might inhibit let-7a, which is associated with development of cystic hyperplasias, cystic atypical hyperplasias, cholangiomas, and cholangiocarcinoma. Knockdown of c-Myc reduced progression of cholangiocarcinoma, whereas knockdown of Mnt accelerated its progression. Down-regulation of miR-34a expression might up-regulate c-Myc. The up-regulation of miR-210 via HIF-2α was involved in down-regulation of Mnt. Activation of the miR-34a-c-Myc and HIF-2α-miR-210-Mnt pathways caused c-Myc to bind the E-box element of cyclin D1, instead of Mnt, resulting in cyclin D1 up-regulation. CONCLUSIONS DLD induction of chronic cholestasis accelerated progression of cholangiocarcinoma, which is mediated by down-regulation of miR-34a, up-regulation miR-210, and replacement of Mnt by c-Myc in binding to cyclin D1.


Hepatology | 2010

Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice†

Kwang Suk Ko; Maria Lauda Tomasi; Ainhoa Iglesias-Ara; Barbara A. French; Samuel W. French; Komal Ramani; Juan José Lozano; Pilsoo Oh; Lina He; Bangyan L. Stiles; Tony W. H. Li; Heping Yang; M. Luz Martínez-Chantar; José M. Mato; Shelly C. Lu

Prohibitin 1 (PHB1) is a highly conserved, ubiquitously expressed protein that participates in diverse processes including mitochondrial chaperone, growth and apoptosis. The role of PHB1 in vivo is unclear and whether it is a tumor suppressor is controversial. Mice lacking methionine adenosyltransferase 1A (MAT1A) have reduced PHB1 expression, impaired mitochondrial function, and spontaneously develop hepatocellular carcinoma (HCC). To see if reduced PHB1 expression contributes to the Mat1a knockout (KO) phenotype, we generated liver‐specific Phb1 KO mice. Expression was determined at the messenger RNA and protein levels. PHB1 expression in cells was varied by small interfering RNA or overexpression. At 3 weeks, KO mice exhibit biochemical and histologic liver injury. Immunohistochemistry revealed apoptosis, proliferation, oxidative stress, fibrosis, bile duct epithelial metaplasia, hepatocyte dysplasia, and increased staining for stem cell and preneoplastic markers. Mitochondria are swollen and many have no discernible cristae. Differential gene expression revealed that genes associated with proliferation, malignant transformation, and liver fibrosis are highly up‐regulated. From 20 weeks on, KO mice have multiple liver nodules and from 35 to 46 weeks, 38% have multifocal HCC. PHB1 protein levels were higher in normal human hepatocytes compared to human HCC cell lines Huh‐7 and HepG2. Knockdown of PHB1 in murine nontransformed AML12 cells (normal mouse hepatocyte cell line) raised cyclin D1 expression, increased E2F transcription factor binding to cyclin D1 promoter, and proliferation. The opposite occurred with PHB1 overexpression. Knockdown or overexpression of PHB1 in Huh‐7 cells did not affect proliferation significantly or sensitize cells to sorafenib‐induced apoptosis. Conclusion: Hepatocyte‐specific PHB1 deficiency results in marked liver injury, oxidative stress, and fibrosis with development of HCC by 8 months. These results support PHB1 as a tumor suppressor in hepatocytes. (HEPATOLOGY 2010.)


Hepatology | 2009

Dysregulation of glutathione synthesis during cholestasis in mice: Molecular mechanisms and therapeutic implications

Heping Yang; Komal Ramani; Meng Xia; Kwang Suk Ko; Tony W. H. Li; Pilsoo Oh; Jiaping Li; Shelly C. Lu

Glutathione (GSH) provides important antioxidant defense and regulates multiple critical processes including fibrogenesis. There are conflicting literature studies regarding changes in GSH during cholestasis. Here we examined changes in the GSH synthetic enzymes during bile duct ligation (BDL) in mice and how treatment with ursodeoxycholic acid (UDCA) and/or S‐adenosylmethionine (SAMe) affects the expression of these enzymes and liver injury. The hepatic expression of glutamate‐cysteine ligase (GCL) subunits and GSH synthase (GS) increased transiently after BDL but fell to 50% of baseline by 2 weeks. Nuclear factor‐erythroid 2‐related factor 2 (Nrf2) trans‐activates gene expression by way of the antioxidant response element (ARE), which controls the expression of all three genes. Despite increased Nrf2 nuclear levels, Nrf2 nuclear binding to ARE fell 2 weeks after BDL. Nuclear levels of c‐Maf and MafG, which can negatively regulate ARE, were persistently induced during BDL and the dominant proteins bound to ARE on day 14. UDCA and SAMe induced the expression of GCL subunits and raised GSH levels. They increased nuclear Nrf2 levels, prevented c‐Maf and MafG induction, and prevented the fall in Nrf2 nuclear binding to ARE. Combined treatment had additive effects, reduced liver cell death, and prevented fibrosis. Conclusion: GSH synthesis falls during later stages of BDL due to lower expression of GSH synthetic enzymes. UDCA and SAMe treatment prevented this fall and combined therapy was more effective on preserving GSH levels and preventing liver injury. (HEPATOLOGY 2009.)


Proceedings of the National Academy of Sciences of the United States of America | 2002

The LEF1/β-catenin complex activates movo1, a mouse homolog of Drosophila ovo required for epidermal appendage differentiation

Baoan Li; Douglas R. Mackay; Qian Dai; Tony W. H. Li; Mahalakshmi Nair; Magid Fallahi; Christopher P. Schonbaum; Judith Fantes; Anthony P. Mahowald; Marian L. Waterman; Elaine Fuchs; Xing Dai

Drosophila ovo/svb (dovo) is required for epidermal cuticle/denticle differentiation and is genetically downstream of the wg signaling pathway. Similarly, a mouse homolog of dovo, movo1, is required for the proper formation of hair, a mammalian epidermal appendage. Here, we provide biochemical evidence that movo1 encodes a nuclear DNA binding protein (mOvo1a) that binds to DNA sequences similar to those that dOvo binds to, further supporting the notion that mOvo1a and dOvo are genetically and biochemically homologous proteins. Additionally, we show that the movo1 promoter is activated by the lymphoid enhancer factor 1 (LEF1)/β-catenin complex, a transducer of wnt signaling. Collectively, our findings suggest that movo1 is a developmental target of wnt signaling during hair morphogenesis in mice, and that the wg/wnt-ovo link in epidermal appendage regulatory pathways has been conserved between mice and flies.


Hepatology | 2013

MAT2B‐GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer

Hui Peng; Lily Dara; Tony W. H. Li; Yuhua Zheng; Heping Yang; Maria Lauda Tomasi; Ivan Tomasi; Pasquale Giordano; José M. Mato; Shelly C. Lu

Methionine adenosyltransferase 2B (MAT2B) encodes for two variant proteins (V1 and V2) that promote cell growth. Using in‐solution proteomics, GIT1 (G Protein Coupled Receptor Kinase Interacting ArfGAP 1) was identified as a potential interacting partner of MAT2B. Here, we examined the functional significance of this interplay. Coimmunoprecipitation experiments examined protein interactions. Tissue expression levels of proteins were examined using immunohistochemistry and western blotting. Expression levels of proteins were varied using transient knockdown or overexpression to observe the effect of alterations in each protein on the entire complex. Direct interaction among individual proteins was further verified using in vitro translated and recombinant proteins. We found both MAT2B variants interact with GIT1. Overexpression of V1, V2, or GIT1 activated mitogen‐activated protein kinase kinase 1 (MEK1) and extracellular signal‐regulated kinase (ERK), raised cyclin D1 protein level, and increased growth, whereas the opposite occurred when V1, V2, or GIT1 was knocked down. MAT2B and GIT1 require each other to activate MEK1/ERK and increase growth. MAT2B directly interacts with MEK1, GIT1, and ERK2. Expression level of V1, V2, or GIT1 directly influenced recruitment of GIT1 or MAT2B and ERK2 to MEK1, respectively. In pull‐down assays, MAT2B directly promoted binding of GIT1 and ERK2 to MEK1. MAT2B and GIT1 interact and are overexpressed in most human liver and colon cancer specimens. Increased expression of V1, V2, or GIT1 promoted growth in an orthotopic liver cancer model, whereas increased expression of either V1 or V2 with GIT1 further enhanced growth and lung metastasis. Conclusion: MAT2B and GIT1 form a scaffold, which recruits and activates MEK and ERK to promote growth and tumorigenesis. This novel MAT2B/GIT1 complex may provide a potential therapeutic gateway in human liver and colon cancer. (HEPATOLOGY 2012)


Carcinogenesis | 2012

Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice

Tony W. H. Li; Heping Yang; Hui Peng; Meng Xia; José M. Mato; Shelly C. Lu

Chronic inflammation is an underlying risk factor for colon cancer. Tumor necrosis factor alpha (TNF-α) plays a critical role in the development of inflammation-induced colon cancer in a mouse model. S-adenosylmethionine (SAMe) and its metabolite methylthioadenosine (MTA) can inhibit lipopolysaccharide-induced TNF-α expression in macrophages. The aim of this work was to examine whether SAMe and MTA are effective in preventing inflammation-induced colon cancer and if so identify signaling pathways affected. Balb/c mice were treated with azoxymethane (AOM) and dextran sulfate sodium to induce colon cancer. Two days after AOM treatment, mice were divided into three groups: vehicle control, SAMe or MTA. Tumor load, histology, immunohistochemistry, gene and protein expression were determined. SAMe and MTA treatment reduced tumor load by ∼40%. Both treatments raised SAMe and MTA levels but MTA also raised S-adenosylhomocysteine levels. MTA treatment prevented the induction of many genes known to play pathogenetic roles in this model except for TNF-α and inducible nitric oxide synthase (iNOS). SAMe also had no effect on TNF-α or iNOS and was less inhibitory than MTA on the other genes. In vivo, both treatments induced apoptosis but inhibited proliferation, β-catenin, nuclear factor kappa B activation and interleukin (IL) 6 signaling. Effect of SAMe and MTA on IL-6 signaling was examined using Colo 205 colon cancer cells. In these cells, SAMe and MTA inhibited IL-6-induced IL-10 expression. MTA also inhibited IL-10 transcription and signal transducer and activator of transcription 3 activation. In conclusion, SAMe and MTA reduced inflammation-induced colon cancer and inhibited several pathways important in colon carcinogenesis.

Collaboration


Dive into the Tony W. H. Li's collaboration.

Top Co-Authors

Avatar

Shelly C. Lu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Heping Yang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

José M. Mato

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hui Peng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Meng Xia

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kwang Suk Ko

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason T. Lam

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiafang Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Maria Lauda Tomasi

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge