Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Wyss-Coray is active.

Publication


Featured researches published by Tony Wyss-Coray.


Nature Medicine | 2006

Inflammation in Alzheimer disease: driving force, bystander or beneficial response?

Tony Wyss-Coray

Alzheimer disease is a progressive dementia with unknown etiology that affects a growing number of the aging population. Increased expression of inflammatory mediators in postmortem brains of people with Alzheimer disease has been reported, and epidemiological studies link the use of anti-inflammatory drugs with reduced risk for the disorder. On the initial basis of this kind of evidence, inflammation has been proposed as a possible cause or driving force of Alzheimer disease. If true, this could have important implications for the development of new treatments. Alternatively, inflammation could simply be a byproduct of the disease process and may not substantially alter its course. Or components of the inflammatory response might even be beneficial and slow the disease. To address these possibilities, we need to determine whether inflammation in Alzheimer disease is an early event, whether it is genetically linked with the disease and whether manipulation of inflammatory pathways changes the course of the pathology. Although there is still little evidence that inflammation triggers or promotes Alzheimer disease, increasing evidence from mouse models suggests that certain inflammatory mediators are potent drivers of the disease. Related factors, on the other hand, elicit beneficial responses and can reduce disease.


Nature Medicine | 2007

Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins

Sandip Ray; Markus Britschgi; Charles Herbert; Yoshiko Takeda-Uchimura; Adam L. Boxer; Kaj Blennow; Leah Friedman; Douglas Galasko; Marek Jutel; Anna Karydas; Jeffrey Kaye; Jerzy Leszek; Bruce L. Miller; Lennart Minthon; Joseph F. Quinn; Gil D. Rabinovici; William H. Robinson; Marwan N. Sabbagh; Yuen T. So; D Larry Sparks; Massimo Tabaton; Jared R. Tinklenberg; Jerome A. Yesavage; Robert Tibshirani; Tony Wyss-Coray

A molecular test for Alzheimers disease could lead to better treatment and therapies. We found 18 signaling proteins in blood plasma that can be used to classify blinded samples from Alzheimers and control subjects with close to 90% accuracy and to identify patients who had mild cognitive impairment that progressed to Alzheimers disease 2–6 years later. Biological analysis of the 18 proteins points to systemic dysregulation of hematopoiesis, immune responses, apoptosis and neuronal support in presymptomatic Alzheimers disease.


Neuron | 2002

Inflammation in Neurodegenerative Disease—A Double-Edged Sword

Tony Wyss-Coray; Lennart Mucke

Inflammation is a defense reaction against diverse insults, designed to remove noxious agents and to inhibit their detrimental effects. It consists of a dazzling array of molecular and cellular mechanisms and an intricate network of controls to keep them in check. In neurodegenerative diseases, inflammation may be triggered by the accumulation of proteins with abnormal conformations or by signals emanating from injured neurons. Given the multiple functions of many inflammatory factors, it has been difficult to pinpoint their roles in specific (patho)physiological situations. Studies of genetically modified mice and of molecular pathways in activated glia are beginning to shed light on this issue. Altered expression of different inflammatory factors can either promote or counteract neurodegenerative processes. Since many inflammatory responses are beneficial, directing and instructing the inflammatory machinery may be a better therapeutic objective than suppressing it.


Nature | 2011

The ageing systemic milieu negatively regulates neurogenesis and cognitive function.

Saul A. Villeda; Jian Luo; Kira I. Mosher; Bende Zou; Markus Britschgi; Gregor Bieri; Trisha Stan; Nina Fainberg; Zhaoqing Ding; Alexander Eggel; Kurt M. Lucin; Eva Czirr; Jeong-Soo Park; Sebastien Couillard-Despres; Ludwig Aigner; Ge Li; Elaine R. Peskind; Jeffrey Kaye; Joseph F. Quinn; Douglas Galasko; Xinmin S. Xie; Thomas A. Rando; Tony Wyss-Coray

In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines—including CCL11 (also known as eotaxin)—the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.


Journal of Clinical Investigation | 2008

The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice

Fiona Pickford; Eliezer Masliah; Markus Britschgi; Kurt M. Lucin; Ramya Narasimhan; Philipp A. Jaeger; Scott A. Small; Brian Spencer; Edward Rockenstein; Beth Levine; Tony Wyss-Coray

Autophagy is the principal cellular pathway for degradation of long-lived proteins and organelles and regulates cell fate in response to stress. Recently, autophagy has been implicated in neurodegeneration, but whether it is detrimental or protective remains unclear. Here we report that beclin 1, a protein with a key role in autophagy, was decreased in affected brain regions of patients with Alzheimer disease (AD) early in the disease process. Heterozygous deletion of beclin 1 (Becn1) in mice decreased neuronal autophagy and resulted in neurodegeneration and disruption of lysosomes. In transgenic mice that express human amyloid precursor protein (APP), a model for AD, genetic reduction of Becn1 expression increased intraneuronal amyloid beta (Abeta) accumulation, extracellular Abeta deposition, and neurodegeneration and caused microglial changes and profound neuronal ultrastructural abnormalities. Administration of a lentiviral vector expressing beclin 1 reduced both intracellular and extracellular amyloid pathology in APP transgenic mice. We conclude that beclin 1 deficiency disrupts neuronal autophagy, modulates APP metabolism, and promotes neurodegeneration in mice and that increasing beclin 1 levels may have therapeutic potential in AD.


Nature Medicine | 2003

Adult mouse astrocytes degrade amyloid-β in vitro and in situ

Tony Wyss-Coray; John D. Loike; Thomas C. Brionne; Emily Lu; Roman Anankov; Fengrong Yan; Samuel C. Silverstein; Jens Husemann

Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by excessive deposition of amyloid-β (Aβ) peptides in the brain. One of the earliest neuropathological changes in AD is the accumulation of astrocytes at sites of Aβ deposition, but the cause or significance of this cellular response is unclear. Here we show that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Aβ1–42. We also show that astrocytes bind and degrade Aβ1–42. Astrocytes plated on Aβ-laden brain sections from a mouse model of AD associate with the Aβ deposits and reduce overall Aβ levels in these sections. Our results suggest a novel mechanism for the accumulation of astrocytes around Aβ deposits, indicate a direct role for astrocytes in degradation of Aβ and implicate deficits in astroglial clearance of Aβ in the pathogenesis of AD. Treatments that increase removal of Aβ by astrocytes may therefore be a critical mechanism to reduce the neurodegeneration associated with AD.


Nature Medicine | 2001

TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice.

Tony Wyss-Coray; Carol Lin; Fengrong Yan; Gui-Qiu Yu; Michelle Rohde; Lisa McConlogue; Eliezer Masliah; Lennart Mucke

Abnormal accumulation of the amyloid-β peptide (Aβ) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor β1 (TGF-β1), a key regulator of the brains responses to injury and inflammation, has been implicated in Aβ deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-β1 production in aged transgenic mice expressing the human β-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Aβ load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-β1, Aβ accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Aβ immunoreactivity associated with parenchymal plaques was inversely correlated with Aβ in blood vessels and cortical TGF-β1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-β1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-β1 stimulated Aβ clearance in microglial cell cultures. These results demonstrate that TGF-β1 is an important modifier of amyloid deposition in vivo and indicate that TGF-β1 might promote microglial processes that inhibit the accumulation of Aβ in the brain parenchyma.


Neuron | 2009

Immune Activation in Brain Aging and Neurodegeneration: Too Much or Too Little?

Kurt M. Lucin; Tony Wyss-Coray

Until recently, the brain was studied almost exclusively by neuroscientists and the immune system by immunologists, fuelling the notion that these systems represented two isolated entities. However, as more data suggest an important role of the immune system in regulating the progression of brain aging and neurodegenerative disease, it has become clear that the crosstalk between these systems can no longer be ignored and a new interdisciplinary approach is necessary. A central question that emerges is whether immune and inflammatory pathways become hyperactivated with age and promote degeneration or whether insufficient immune responses, which fail to cope with age-related stress, may contribute to disease. We try to explore here the consequences of gain versus loss of function with an emphasis on microglia as sensors and effectors of immune function in the brain, and we discuss the potential role of the peripheral environment in neurodegenerative diseases.


Cold Spring Harbor Perspectives in Medicine | 2012

Inflammation in Alzheimer Disease—A Brief Review of the Basic Science and Clinical Literature

Tony Wyss-Coray; Joseph Rogers

Biochemical and neuropathological studies of brains from individuals with Alzheimer disease (AD) provide clear evidence for an activation of inflammatory pathways, and long-term use of anti-inflammatory drugs is linked with reduced risk to develop the disease. As cause and effect relationships between inflammation and AD are being worked out, there is a realization that some components of this complex molecular and cellular machinery are most likely promoting pathological processes leading to AD, whereas other components serve to do the opposite. The challenge will be to find ways of fine tuning inflammation to delay, prevent, or treat AD.


Nature | 1997

Amyloidogenic role of cytokine TGF-Beta-1 in transgenic mice and in Alzheimer's disease

Tony Wyss-Coray; Eliezer Masliah; Margaret Mallory; Lisa McConlogue; Kelly Johnson-Wood; Carol Lin; Lennart Mucke

Deposition of amyloid-β peptide in the central nervous system is a hallmark of Alzheimers disease and a possible cause of neurodegeneration. The factors that initiate or promote deposition of amyloid-β peptide are not known. The transforming growth factor TGF-β1 plays a central role in the response of the brain to injury,, and increased TGF-β1 has been found in the central nervous system of patients with Alzheimers disease. Here we report that TGF-β1 induces amyloid-β deposition in cerebral blood vessels and meninges of aged transgenic mice overexpressing this cytokine from astrocytes. Co-expression of TGF-β1 in transgenic mice overexpressing amyloid-precursor protein, which develop Alzheimers like pathology, accelerated the deposition of amyloid-β peptide. More TGF-β1 messenger RNA was present in post-mortem brain tissue of Alzheimers patients than in controls, the levels correlating strongly with amyloid-β deposition in the damaged cerebral blood vessels of patients with cerebral amyloid angiopathy. These results indicate that overexpression of TGF-β1 may initiate or promote amyloidogenesis in Alzheimers disease and in experimental models and so may be a risk factor for developing Alzheimers disease.

Collaboration


Dive into the Tony Wyss-Coray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lennart Mucke

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ina Tesseur

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner J. Pichler

University Hospital of Bern

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge