Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Yuen is active.

Publication


Featured researches published by Tony Yuen.


Nature | 2008

Identification of a serotonin/glutamate receptor complex implicated in psychosis

Javier González-Maeso; Rosalind L. Ang; Tony Yuen; Pokman Chan; Noelia V. Weisstaub; Juan F. López-Giménez; Mingming Zhou; Yuuya Okawa; Luis F. Callado; Graeme Milligan; Jay A. Gingrich; Marta Filizola; J. Javier Meana; Stuart C. Sealfon

The psychosis associated with schizophrenia is characterized by alterations in sensory processing and perception. Some antipsychotic drugs were identified by their high affinity for serotonin 5-HT2A receptors (2AR). Drugs that interact with metabotropic glutamate receptors (mGluR) also have potential for the treatment of schizophrenia. The effects of hallucinogenic drugs, such as psilocybin and lysergic acid diethylamide, require the 2AR and resemble some of the core symptoms of schizophrenia. Here we show that the mGluR2 interacts through specific transmembrane helix domains with the 2AR, a member of an unrelated G-protein-coupled receptor family, to form functional complexes in brain cortex. The 2AR–mGluR2 complex triggers unique cellular responses when targeted by hallucinogenic drugs, and activation of mGluR2 abolishes hallucinogen-specific signalling and behavioural responses. In post-mortem human brain from untreated schizophrenic subjects, the 2AR is upregulated and the mGluR2 is downregulated, a pattern that could predispose to psychosis. These regulatory changes indicate that the 2AR–mGluR2 complex may be involved in the altered cortical processes of schizophrenia, and this complex is therefore a promising new target for the treatment of psychosis.


Journal of Virology | 2006

Influenza Virus Evades Innate and Adaptive Immunity via the NS1 Protein

Ana Fernandez-Sesma; Svetlana Marukian; Barbara J. Ebersole; Dorothy Kaminski; Man Seong Park; Tony Yuen; Stuart C. Sealfon; Adolfo García-Sastre; Thomas M. Moran

ABSTRACT Both antibodies and T cells contribute to immunity against influenza virus infection. However, the generation of strong Th1 immunity is crucial for viral clearance. Interestingly, we found that human dendritic cells (DCs) infected with influenza A virus have lower allospecific Th1-cell stimulatory abilities than DCs activated by other stimuli, such as lipopolysaccharide and Newcastle disease virus infection. This weak stimulatory activity correlates with a suboptimal maturation of the DCs following infection with influenza A virus. We next investigated whether the influenza A virus NS1 protein could be responsible for the low levels of DC maturation after influenza virus infection. The NS1 protein is an important virulence factor associated with the suppression of innate immunity via the inhibition of type I interferon (IFN) production in infected cells. Using recombinant influenza and Newcastle disease viruses, with or without the NS1 gene from influenza virus, we found that the induction of a genetic program underlying DC maturation, migration, and T-cell stimulatory activity is specifically suppressed by the expression of the NS1 protein. Among the genes affected by NS1 are those coding for macrophage inflammatory protein 1β, interleukin-12 p35 (IL-12 p35), IL-23 p19, RANTES, IL-8, IFN-α/β, and CCR7. These results indicate that the influenza A virus NS1 protein is a bifunctional viral immunosuppressor which inhibits innate immunity by preventing type I IFN release and inhibits adaptive immunity by attenuating human DC maturation and the capacity of DCs to induce T-cell responses. Our observations also support the potential use of NS1 mutant influenza viruses as live attenuated influenza virus vaccines.


Nucleic Acids Research | 2005

Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization

Pokman Chan; Tony Yuen; Frederique Ruf; Javier González-Maeso; Stuart C. Sealfon

The photostability and narrow emission spectra of non-organic quantum dot fluorophores (QDs) make them desirable candidates for fluorescent in situ hybridization (FISH) to study the expression of specific mRNA transcripts. We developed a novel method for direct QD labeling of modified oligonucleotide probes through streptavidin and biotin interactions, as well as protocols for their use in multiple-label FISH. We validated this technique in mouse brainstem sections. The subcellular localization of the vesicular monoamine transporter (Vmat2) mRNA corresponds when using probes labeled with two different QDs in the same hybridization. We developed protocols for combined direct QD FISH and QD immunohistochemical labeling within the same neurons as well as for simultaneous study of the subcellular distribution of multiple mRNA targets. We demonstrated increased sensitivity of FISH using QDs in comparison with organic fluorophores. These techniques gave excellent histological results both for multiplex FISH and combined FISH and immunohistochemistry. This approach can facilitate the ultrasensitive simultaneous study of multiple mRNA and protein markers in tissue culture and histological section.


The Journal of Clinical Endocrinology and Metabolism | 2014

Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia Using Cell-Free Fetal DNA in Maternal Plasma

Maria I. New; Tong Yk; Tony Yuen; Peiyong Jiang; Christian Pina; Chan Kc; Ahmed Khattab; Gary J.W. Liao; Mabel Yau; Se-Min Kim; Rossa W.K. Chiu; Sun L; Mone Zaidi; Yuk Ming Dennis Lo

CONTEXT Congenital adrenal hyperplasia (CAH) is an autosomal recessive condition that arises from mutations in CYP21A2 gene, which encodes for the steroidogenic enzyme 21-hydroxylase. To prevent genital ambiguity in affected female fetuses, prenatal treatment with dexamethasone must begin on or before gestational week 9. Currently used chorionic villus sampling and amniocentesis provide genetic results at approximately 14 weeks of gestation at the earliest. This means that mothers who want to undergo prenatal dexamethasone treatment will be unnecessarily treating seven of eight fetuses (males and three of four unaffected females), emphasizing the desirability of earlier genetic diagnosis in utero. OBJECTIVE The objective of the study was to develop a noninvasive method for early prenatal diagnosis of fetuses at risk for CAH. PATIENTS Fourteen families, each with a proband affected by phenotypically classical CAH, were recruited. DESIGN Cell-free fetal DNA was obtained from 3.6 mL of maternal plasma. Using hybridization probes designed to capture a 6-Mb region flanking CYP21A2, targeted massively parallel sequencing (MPS) was performed to analyze genomic DNA samples from parents and proband to determine parental haplotypes. Plasma DNA from pregnant mothers also underwent targeted MPS to deduce fetal inheritance of parental haplotypes. RESULTS In all 14 families, the fetal CAH status was correctly deduced by targeted MPS of DNA in maternal plasma, as early as 5 weeks 6 days of gestation. CONCLUSIONS MPS on 3.6 mL plasma from pregnant mothers could potentially provide the diagnosis of CAH, noninvasively, before the ninth week of gestation. Only affected female fetuses will thus be treated. Our strategy represents a generic approach for noninvasive prenatal testing for an array of autosomal recessive disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genotype–phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency

Maria I. New; Moolamannil Abraham; Brian Gonzalez; Miroslav Dumic; Maryam Razzaghy-Azar; David Chitayat; Li Sun; Mone Zaidi; Robert C. Wilson; Tony Yuen

Over the last two decades, we have extensively studied the genetics of congenital adrenal hyperplasia caused by 21-hydroxylase deficiency (CAH) and have performed 8,290 DNA analyses of the CYP21A2 gene on members of 4,857 families at risk for CAH—the largest cohort of CAH patients reported to date. Of the families studied, 1,507 had at least one member affected with one of three known forms of CAH, namely salt wasting, simple virilizing, or nonclassical CAH. Here, we report the genotype and phenotype of each affected patient, as well as the ethnic group and country of origin for each patient. We showed that 21 of 45 genotypes yielded a phenotypic correlation in our patient cohort. In particular, contrary to what is generally reported in the literature, we found that certain mutations, for example, the P30L, I2G, and I172N mutations, yielded different CAH phenotypes. In salt wasting and nonclassical CAH, a phenotype can be attributed to a genotype; however, in simple virilizing CAH, we observe wide phenotypic variability, particularly with the exon 4 I172N mutation. Finally, there was a high frequency of homozygous I2G and V281L mutations in Middle Eastern and Ashkenazi Jewish populations, respectively. By identifying the predominant phenotype for a given genotype, these findings should assist physicians in prenatal diagnosis and genetic counseling of parents who are at risk for having a child with CAH.


Journal of Biological Chemistry | 1999

The Functional Microdomain in Transmembrane Helices 2 and 7 Regulates Expression, Activation, and Coupling Pathways of the Gonadotropin-releasing Hormone Receptor

Colleen A. Flanagan; Wei Zhou; Ling Chi; Tony Yuen; Vladimir Rodic; Derek Robertson; Melanie Johnson; Pamela Holland; Robert P. Millar; Harel Weinstein; Rory Mitchell; Stuart C. Sealfon

Structural microdomains of G protein-coupled receptors (GPCRs) consist of spatially related side chains that mediate discrete functions. The conserved helix 2/helix 7 microdomain was identified because the gonadotropin-releasing hormone (GnRH) receptor appears to have interchanged the Asp2.50 and Asn7.49 residues which are conserved in transmembrane helices 2 and 7 of rhodopsin-like GPCRs. We now demonstrate that different side chains of this microdomain contribute specifically to receptor expression, heterotrimeric G protein-, and small G protein-mediated signaling. An Asn residue is required in position 2.50(87) for expression of the GnRH receptor at the cell surface, most likely through an interaction with the conserved Asn1.50(53) residue, which we also find is required for receptor expression. Most GPCRs require an Asp side chain at either the helix 2 or helix 7 locus of the microdomain for coupling to heterotrimeric G proteins, but the GnRH receptor has transferred the requirement for an acidic residue from helix 2 to 7. However, the presence of Asp at the helix 7 locus precludes small G protein-dependent coupling to phospholipase D. These results implicate specific components of the helix 2/helix 7 microdomain in receptor expression and in determining the ability of the receptor to adopt distinct activated conformations that are optimal for interaction with heterotrimeric and small G proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The myokine irisin increases cortical bone mass

Graziana Colaianni; Concetta Cuscito; Teresa Mongelli; Paolo Pignataro; Cinzia Buccoliero; Peng Liu; Ping Lu; Loris Sartini; Mariasevera Di Comite; Giorgio Mori; Adriana Di Benedetto; Giacomina Brunetti; Tony Yuen; Li Sun; Janne E. Reseland; Silvia Colucci; Maria I. New; Mone Zaidi; Saverio Cinti; Maria Grano

Significance Although exercise is a well known and potent stimulus for new bone formation, and weightlessness or muscle loss characteristically cause bone loss, it has remained unclear how muscle talks to bone, despite their close proximity. Here, we show that a molecule irisin derived from skeletal muscle in response to exercise has profound effects in enhancing mass and improving the geometry and strength specifically of cortical bone, the key function of which is to resist bending and torsion. Trabecular bone, which is a reservoir for bodily calcium, is remarkably spared. Irisin may therefore not only be the molecule responsible for muscle–bone connectivity, but could also become a therapy for sarcopenia and osteoporosis, which occur in tandem in the elderly. It is unclear how physical activity stimulates new bone synthesis. We explored whether irisin, a newly discovered myokine released upon physical activity, displays anabolic actions on the skeleton. Young male mice were injected with vehicle or recombinant irisin (r-irisin) at a low cumulative weekly dose of 100 µg kg−1. We observed significant increases in cortical bone mass and strength, notably in cortical tissue mineral density, periosteal circumference, polar moment of inertia, and bending strength. This anabolic action was mediated primarily through the stimulation of bone formation, but with parallel notable reductions in osteoclast numbers. The trabecular compartment of the same bones was spared, as were vertebrae from the same mice. Higher irisin doses (3,500 µg kg−1 per week) cause browning of adipose tissue; this was not seen with low-dose r-irisin. Expectedly, low-dose r-irisin modulated the skeletal genes, Opn and Sost, but not Ucp1 or Pparγ expression in white adipose tissue. In bone marrow stromal cell cultures, r-irisin rapidly phosphorylated Erk, and up-regulated Atf4, Runx2, Osx, Lrp5, β-catenin, Alp, and Col1a1; this is consistent with a direct receptor-mediated action to stimulate osteogenesis. We also noted that, although the irisin precursor Fndc5 was expressed abundantly in skeletal muscle, other sites, such as bone and brain, also expressed Fndc5, albeit at low levels. Furthermore, muscle fibers from r-irisin–injected mice displayed enhanced Fndc5 positivity, and irisin induced Fdnc5 mRNA expression in cultured myoblasts. Our data therefore highlight a previously unknown action of the myokine irisin, which may be the molecular entity responsible for muscle–bone connectivity.


Methods | 2003

Focused microarray analysis

Elisa Wurmbach; Tony Yuen; Stuart C. Sealfon

We describe detailed protocols and results with an integrated platform for studying relative transcript expression, including microarray design and fabrication, analysis and calibration algorithms, and high throughput quantitative real-time PCR. This approach optimizes sensitivity and accuracy while controlling the cost of experiments. A high quality cDNA array was fabricated using a restricted number of carefully selected transcripts with each clone printed in triplicate. This focused array facilitated both repeated measurement and replicate experiments. Following normalization and differential expression analysis, we found that experiments with this array identified differentially expressed transcripts with a high degree of accuracy and with high sensitivity to low levels of differential expression. Using a calibration algorithm improved the accuracy of the array in quantifying the relative level of transcript expression. All differentially expressed transcripts identified by the array were independently tested using high throughput quantitative real-time PCR assays. This approach reliably identified transcripts having as low as 1.3-fold differences in transcript expression between RNA samples from treatment- and control groups and was applicable to highly heterogenous tissue sources such as hypothalamus and cerebral cortex.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia.

Shozeb Haider; Islam B; D'Atri; Sgobba M; Poojari C; Li Sun; Tony Yuen; Mone Zaidi; Maria I. New

Mutations in the cytochrome p450 (CYP)21A2 gene, which encodes the enzyme steroid 21-hydroxylase, cause the majority of cases in congenital adrenal hyperplasia, an autosomal recessive disorder. To date, more than 100 CYP21A2 mutations have been reported. These mutations can be associated either with severe salt-wasting or simple virilizing phenotypes or with milder nonclassical phenotypes. Not all CYP21A2 mutations have, however, been characterized biochemically, and the clinical consequences of these mutations remain unknown. Using the crystal structure of its bovine homolog as a template, we have constructed a humanized model of CYP21A2 to provide comprehensive structural explanations for the clinical manifestations caused by each of the known disease-causing missense mutations in CYP21A2. Mutations that affect membrane anchoring, disrupt heme and/or substrate binding, or impair stability of CYP21A2 cause complete loss of function and salt-wasting disease. In contrast, mutations altering the transmembrane region or conserved hydrophobic patches cause up to a 98% reduction in enzyme activity and simple virilizing disease. Mild nonclassical disease can result from interference in oxidoreductase interactions, salt-bridge and hydrogen-bonding networks, and nonconserved hydrophobic clusters. A simple in silico evaluation of previously uncharacterized gene mutations could, thus, potentially help predict the often diverse phenotypes of a monogenic disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia

Roberto Tamma; Li Sun; Concetta Cuscito; Ping Lu; Michelangelo Corcelli; Jianhua Li; Graziana Colaianni; Surinder S. Moonga; Adriana Di Benedetto; Maria Grano; Silvia Colucci; Tony Yuen; Maria I. New; Alberta Zallone; Mone Zaidi

Significance In this study, we show that a primitive brain hormone, arginine vasopressin (AVP), which has hitherto been implicated in regulating water balance in mammals, has a function in skeletal homeostasis. Using genetically modified mice that are lacking one of the AVP receptors as well as pharmacologic inhibitors, we show that AVP negatively regulates osteoblasts (cells that form new bone) and stimulates osteoclasts (cells that remove old bone). Our findings explain the bone loss that is known to accompany low blood sodium levels in patients when AVP levels are high. Although hyponatremia is known to be associated with osteoporosis and a high fracture risk, the mechanism through which bone loss ensues has remained unclear. As hyponatremic patients have elevated circulating arginine-vasopressin (AVP) levels, we examined whether AVP can affect the skeleton directly as yet another component of the pituitary-bone axis. Here, we report that the two Avp receptors, Avpr1α and Avpr2, coupled to Erk activation, are expressed in osteoblasts and osteoclasts. AVP injected into wild-type mice enhanced and reduced, respectively, the formation of bone-resorbing osteoclasts and bone-forming osteoblasts. Conversely, the exposure of osteoblast precursors to Avpr1α or Avpr2 antagonists, namely SR49059 or ADAM, increased osteoblastogenesis, as did the genetic deletion of Avpr1α. In contrast, osteoclast formation and bone resorption were both reduced in Avpr1α−/− cultures. This process increased bone formation and reduced resorption resulted in a profound enhancement of bone mass in Avpr1α−/− mice and in wild-type mice injected with SR49059. Collectively, the data not only establish a primary role for Avp signaling in bone mass regulation, but also call for further studies on the skeletal actions of Avpr inhibitors used commonly in hyponatremic patients.

Collaboration


Dive into the Tony Yuen's collaboration.

Top Co-Authors

Avatar

Mone Zaidi

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria I. New

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alberta Zallone

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Stuart C. Sealfon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peng Liu

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jameel Iqbal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graziana Colaianni

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge