Tooba Naz Shamsi
Jamia Millia Islamia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tooba Naz Shamsi.
International Journal of Biological Macromolecules | 2017
Romana Parveen; Tooba Naz Shamsi; Sadaf Fatima
This review helps to understand protein misfolding events, which results in protein aggregation, and hence to related neurodegenerative diseases. Many chaperones and folding factors are found inside the cell system for the proper folding of protein. If protein gets misfolded, it may accumulate in cells and can lead to several fatal diseases. In some cases, misfolded proteins aggregated in form of loop-sheet polymer and amyloid fibril when they escape the degradation process and leads to neurodegenerative disorders. Nanoparticles (NPs) are nano-sized materials, can be formulated by using organic molecules such as gelatin, chitosan, inorganic molecules, metals such as iron, gold, silver, etc. NPs unite with proteins and form a dynamic nanoparticle-protein (NP-P) corona. Conformational changes may be induced in adsorbed protein by this NP-P corona which might change overall bio-reactivity of NP. They can influence correct folding of unfolded or misfolded protein and prevent their aggregation which may be helpful in the cure of neurodegenerative disorders. Due to high area:size ratio, NPs have higher advantages over bulk materials. Hence, the effect of NPs on the proper protein folding opens new gateways to produce a biologically active three dimensional biomolecule.
PLOS ONE | 2017
Sumbul Afreen; Tooba Naz Shamsi; Mohd Affan Baig; Nadeem Ahmad; Sadaf Fatima; M. Irfan Qureshi; Md. Imtaiyaz Hassan; Tasneem Fatma
A novel extracellular laccase enzyme produced from Spirulina platensis CFTRI was purified by ultrafiltration, cold acetone precipitation, anion exchange and size exclusion chromatography with 51.5% recovery and 5.8 purification fold. The purified laccase was a monomeric protein with molecular mass of ~66 kDa that was confirmed by zymogram analysis and peptide mass fingerprinting. The optimum pH and temperature of the enzyme activity was found at 3.0 and 30°C using ABTS as substrate but the enzyme was quite stable at high temperature and alkaline pH. The laccase activity was enhanced by Cu+2, Zn+2 and Mn+2. In addition, the dye decolorization potential of purified laccase was much higher in terms of extent as well as time. The purified laccase decolorized (96%) of anthraquinonic dye Reactive blue- 4 within 4 h and its biodegradation studies was monitored by UV visible spectra, FTIR and HPLC which concluded that cyanobacterial laccase can be efficiently used to decolorize synthetic dye and help in waste water treatment.
Journal of Dietary Supplements | 2018
Tooba Naz Shamsi; Romana Parveen; Sumbul Afreen; Mudasser Azam; Priyankar Sen; Yamini Sharma; Qazi Mohd. Rizwanul Haque; Tasneem Fatma; Nikhat Manzoor; Sadaf Fatima
ABSTRACT Protease inhibitors are one of the most promising and investigated subjects for their role in pharmacognostic and pharmacological studies. This study aimed to investigate antioxidant, anti-inflammatory, and antimicrobial activities of trypsin inhibitors (TIs) from two plant sources (Cajanus cajan and Phaseolus limensis). TI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. TI from Phaseolus limensis (lima bean trypsin inhibitor; LBTI) was procured from Sigma-Aldrich, St. Louis, Missouri, United States. The antioxidant activity was analyzed by ferric ion reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The anti-inflammatory property of TIs was determined by inhibition of albumin denaturation assay. Ascorbic acid and aspirin were used as standards for antioxidant and anti-inflammatory assays, respectively. These TIs were tested against various bacterial and fungal strains. The TIs showed DPPH radical–scavenging activity in a concentration-dependent manner with IC50 values comparable to ascorbic acid. The FRAP values were also observed comparable to ascorbic acid and followed the trend of dose-dependent manner. The half maximal inhibitory concentration (IC50) values of CCTI and LBTI in anti-inflammatory test showed that LBTI is more potent than CCTI. The TIs showed potent antibacterial activity, but apparently no action against fungi. This study has reported the biological properties of CCTI and LBTI for the first time. The results show that TIs possess the ability to inhibit diseases caused by oxidative stress, inflammation, and bacterial infestation.
Journal of natural science, biology, and medicine | 2017
Tooba Naz Shamsi; Romana Parveen; Shahzaib Ahamad; Sadaf Fatima
Context: A large number of studies have proven that Protease inhibitors (PIs), specifically serine protease inhibitors, show immense divergence in regulation of proteolysis by targeting their specific proteases and hence, they play a key role in healthcare. Objective: We aimed to access in-vitro anticancer potential of PI from Cajanus cajan (CCPI). Also, crystallization of CCPI was targetted alongwith structure determination and its structure-function relationship. Materials and Methods: CCPI was purified from Cajanus cajan seeds by chromatographic techniques. The purity and molecular mass was determined by SDS-PAGE. Anticancer potential of CCPI was determined by MTT assay in normal HEK and cancerous A549 cells. The crystallization screening of CCPI was performed by commercially available screens. CCPI sequence was subject to BLASTp with homologous PIs. Progressive multiple alignment was performed using clustalw2 and was modelled using ab initio protocol of I-TASSER. Results: The results showed ~14kDa CCPI was purified in homogeneity. Also, CCPI showed low cytotoxic effects of in HEK i.e., 27% as compared with 51% cytotoxicity in A549 cells. CCPI crystallized at 16°C using 15% PEG 6000 in 0.1M potassium phosphate buffer (pH 6.0) in 2-3weeks as rod or needles visualized as clusters under the microscope. The molecular modelling revealed that it contains 3 beta sheets, 3 beta hairpins, 2 β-bulges, 6 strands, 3 helices, 1helix-helix interaction, 41 β-turns and 27 γ-turns. Discussion and Conclusion: The results indicate that CCPI may help to treat cancer in vivo aswell. Also, this is the first report on preliminary crystallization and structural studies of CCPI.
Archive | 2017
Manish Kumar; Tooba Naz Shamsi; Romana Parveen; Sadaf Fatima
In recent times, there has been an emergence of conventional research approaches supplemented by new science and intermediate technology to resolve current challenges in agriculture like declining farm profitability, reduction in natural resources, resurgence of the new pest and diseases, global warming, rising population, and climate change. Major chemical companies are now trying to make potential pesticides at nanoscale as nanopesticides to increase the effectiveness of pesticides. Nanoencapsulation is a potent carrier for carrying these nanopesticides to the target position. One of the most efficient nanomaterial is aluminosilicate nanotube. The spread of aluminosilicate nanotubes on plant surface is taken up by insect hairs. Insects consume pesticide-filled nanotubes and get killed. The nanoparticles are also used to prepare the strain-resistant plants and eco-friendly pesticide development. Silicon nanoparticles are absorbed by plants, and they lead to increased disease and stress resistance. Nanoparticles not only play a crucial role in killing of pathogens but also its early detection through the application of nanobiosensor. Another area where nanotechnology has shown promising result is delivery of DNA into plant cells to alter the expression profile of plants. Mesoporous silica nanoparticle has ability to deliver DNA and drugs into plant. Nanohomeopathic drug can significantly increase plant growth, chlorophyll, and water content of the leaves as compared to untreated plants. The application of nanotechnology in agriculture ranges from crop production to protection of produced crop against insects and other pests. Nanoparticles have shown to have profound implication on entomology, for example, the insecticidal activity of stored grain pests because of loaded nanoformulated allelochemicals. Some common examples of nanoparticles having antimicrobial effect are silver nanoparticles and TiO2 nanoparticles. Hence, an early embracing of this nanotechnological feat will have major say in ameliorating the worsening condition of food scarcity of ever-increasing population.
Indian Journal of Pharmacology | 2017
Tooba Naz Shamsi; Romana Parveen; Sadaf Fatima
OBJECTIVES: Protease inhibitors are one of the most promising and investigated subjects for their role in pharmacognostical and pharmacological studies. This study aimed to investigate antineoplastic and antioxidant activity of trypsin inhibitors (TIs) isolated from three plant sources and their inhibitory role in the cell line. MATERIALS AND METHODOLOGY: TIs were obtained from different plant sources. Antineoplastic potential on adenocarcinoma human alveolar basal epithelial cell line (A549) and normal Human Embryonic Kidney (HEK) was determined using MTT assay. Activities of antioxidant enzyme, nitric oxide scavenger, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase were assessed in cell lines incubated with and without TIs. The outcome was analyzed by spectrophotometer. RESULTS: TIs showed the higher cytotoxicity on A549 cells as compared to normal HEK cell line. TIs exhibited fair increase in antioxidant enzyme activity in A549 cells as compared to control. This might be one of the strategies of antineoplastic effect in cancer cells. CONCLUSIONS: This study has reported the antioxidant and antineoplastic properties of these TIs for the first time in A549 cells (to the best of our knowledge). The results show that TIs possess ability to prevent cancer and diseases caused due to oxidative stress. Therefore, we conclude that TIs can be used as supplements along with the conventional drugs for increased efficacy in the treatment of diseases such as cardiovascular disease, atherosclerosis, and cancer.
Open Pharmaceutical Sciences Journal | 2016
Tooba Naz Shamsi; Sadaf Fatima
Background: Proteases are important enzymes that can degrade proteins and are found in animals, plants, bacteria, fungi and viruses. The action of proteases can be controlled by Protease Inhibitors (PIs), chemical or proteinaceous in nature that can block the active site of protease. Since the step catalyzed by proteases may play important role in life cycle of microbes, hindering the action of proteases by PIs may act as therapeutic intervention for microbial infection. Material and Methods: A thorough study was performed and wide range of literature was surveyed to confirm our results of PIs showing antibacterial activity. Results: PIs have shown to be effective drugs against bacterial pathogens, pathogenic viruses- Human Immunodeficiency Virus (HIV), Herpes virus, Hepatitis Virus. PIs have recently been investigated for controlling protozoan parasites. Clinical value of proteases and their inhibitors has been studied in Helicobacter pylori which is the etiologic agent of gastritis. Conclusion: This review is intended to highlight the role of PIs in the Battle against Microbial Pathogens.
Journal of Dietary Supplements | 2018
Tooba Naz Shamsi; Romana Parveen; Sadaf Fatima
ABSTRACT A large number of studies have proven the efficacy of ayurveda in the field of health and wellness. Panchakola, an ayurvedic formulation, is a general health tonic primarily used to cure fever, inflammation, pain, indigestion, and so on. We investigated effects of panchakola on oxidative stress in MCF-7 breast cancer and human embryonic kidney 293 (HEK293) cells. This work was performed to assess the antineoplastic and free radical–scavenging potential of aqueous extract of panchakola, a polyherbal formulation, in normal and breast cancer cell lines (i.e., HEK and MCF-7, respectively) using MTT assay. Activities of antioxidant enzyme, nitric oxide scavenger, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase were assessed in cell lines incubated with and without panchakola. The outcome was analyzed by spectrophotometer. The results demonstrated increased cytotoxicity in MCF-7 (IC50 16.446 μg/ml) comparable to the results obtained with standard anticancer control (curcumin) with IC50 10.265 μg/ml in MCF-7 cell line. Further, the results obtained from antioxidant assays suggested increased antioxidant activity in MCF-7 cells as compared to normal HEK cells. The results derived from this study suggested panchakola is a strong contender in the field of phytomedicines to fight cancer and free radical–related diseases.
Biotechnology Reports | 2018
Romana Parveen; Tooba Naz Shamsi; Gurjeet Singh; Teeba Athar; Sadaf Fatima
Highlights • Phytocompounds detection from the aqueous and methanolic extract of herbal remedy triphala and its constituting plants.• Antioxidant potential of triphala and its constituting plants.• Triphala and its constituting plants as potential antibacterial agents.
Preparative Biochemistry & Biotechnology | 2017
Tooba Naz Shamsi; Romana Parveen; Priyankar Sen; Sadaf Fatima
ABSTRACT The present study describes the purification and physicochemical and biochemical characterization of trypsin-like protease from green-seeded chickpea (Cicer arientum). The crude extract of chickpea trypsin (CpT) was obtained by homogenization followed by differential ammonium sulfate precipitation. The CpT was purified by ion-exchange chromatography on diethylaminoethyl (DEAE) column, pre-equilibrated with 20 mM tris-CaCl2 buffer (pH 8.2) with a flow rate of 0.5 mL min−1. The molecular weight and purity of ∼23 kDa of CpT were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Activity of protease was determined using Nα-benzoyl-DL-arginine-p-nitroanilide as chromogenic substrate and CpT purified showed a specific inhibitor activity of 26978.7697 U mg−1, fold purity of 9.8, and the yield of 70.2%. The characterization was performed for thermal stability, pH profile, and effect of various inhibitors on enzymatic activity. The protein isolated showed stability in the neutral to mild alkaline pH range and thermostability up to 50°C. CpT confirmed its serine nature as it was appreciably inhibited by serine protease inhibitors (maximum 6%), whereas metalloprotease inhibitors barely affected the activity of the enzyme (85%). To the best of our knowledge, it is first reported on purification of protease with trypsin-like properties, from this source.