Toomas Room
National Institute of Chemical Physics and Biophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toomas Room.
Proceedings of the National Academy of Sciences of the United States of America | 2012
C. Beduz; Marina Carravetta; Judy Y.-C. Chen; Maria Concistrè; Mark Denning; Michael Frunzi; A.J. Horsewill; Ole G. Johannessen; Ronald G. Lawler; Xuegong Lei; Malcolm H. Levitt; Yongjun Li; Salvatore Mamone; Yasujiro Murata; Urmas Nagel; Tomoko Nishida; Jacques Ollivier; S. Rols; Toomas Room; Riddhiman Sarkar; Nicholas J. Turro; Y. Yang
Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho–para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environment.
Journal of Chemical Physics | 2011
Min Ge; Urmas Nagel; D. Hüvonen; Toomas Room; Salvatore Mamone; Malcolm H. Levitt; Marina Carravetta; Yasujiro Murata; Koichi Komatsu; Judy Y.-C. Chen; Nicholas J. Turro
We have measured the temperature dependence of the infrared spectra of a hydrogen molecule trapped inside a C(60) cage, H(2)@C(60), in the temperature range from 6 to 300 K and analyzed the excitation spectrum by using a five-dimensional model of a vibrating rotor in a spherical potential. The electric dipole moment is induced by the translational motion of endohedral H(2) and gives rise to an infrared absorption process where one translational quantum is created or annihilated, ΔN = ±1. Some fundamental transitions, ΔN = 0, are observed as well. The rotation of endohedral H(2) is unhindered but coupled to the translational motion. The isotropic and translation-rotation coupling part of the potential are anharmonic and different in the ground and excited vibrational states of H(2). The vibrational frequency and the rotational constant of endohedral H(2) are smaller than those of H(2) in the gas phase. The assignment of lines to ortho- and para-H(2) is confirmed by measuring spectra of a para enriched sample of H(2)@C(60) and is consistent with the earlier interpretation of the low temperature infrared spectra [Mamone et al., J. Chem. Phys. 130, 081103 (2009)].
Nature Chemistry | 2016
Andrea Krachmalnicoff; Richard Bounds; Salvatore Mamone; Shamim Alom; Maria Concistrè; Benno Meier; Karel Kouřil; Mark E. Light; Mark R. Johnson; S. Rols; A.J. Horsewill; Anna Shugai; Urmas Nagel; Toomas Room; Marina Carravetta; Malcolm H. Levitt; Richard J. Whitby
The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.
Nature Physics | 2012
S. Bordács; István Kézsmárki; D. Szaller; László Demkó; Noriaki Kida; H. Murakawa; Y. Onose; Ryo Shimano; Toomas Room; Urmas Nagel; Shin Miyahara; Nobuo Furukawa; Yoshinori Tokura
Chirality is usually manifested by differences in a material’s response to left- and right-circularly polarized light. This difference is the result of the specific distribution of charge within chiral materials. A similar response has now been found to result from the chiral spin structure of an antiferromagnet.
Journal of Chemical Physics | 2011
Min Ge; Urmas Nagel; D. Hüvonen; Toomas Room; Salvatore Mamone; Malcolm H. Levitt; Marina Carravetta; Yasujiro Murata; Koichi Komatsu; Xuegong Lei; Nicholas J. Turro
We report on the dynamics of two hydrogen isotopomers, D(2) and HD, trapped in the molecular cages of a fullerene C(60) molecule. We measured the infrared spectra and analyzed them using a spherical potential for a vibrating rotor. The potential, vibration-rotation Hamiltonian, and dipole moment parameters are compared with previously studied H(2)@C(60) parameters [M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. H. Levitt, M. Carravetta, Y. Murata, K. Komatsu, J. Y.-C. Chen, and N. J. Turro, J. Chem. Phys. 134, 054507 (2011)]. The isotropic part of the potential is similar for all three isotopomers. In HD@C(60), we observe mixing of the rotational states and an interference effect of the dipole moment terms due to the displacement of the HD rotation center from the fullerene cage center.
Physical Review Letters | 2009
J. Yang; D. Huvonen; U. Nagel; Toomas Room; N. Ni; P. C. Canfield; Sergey L. Bud'ko; J. P. Carbotte; T. Timusk
Normal state optical spectroscopy on single crystals of the new iron arsenide superconductor Ba0.55K0.45Fe2As2 shows that the infrared spectrum consists of two major components: a strong metallic Drude band and a well-separated midinfrared absorption centered at 0.7 eV. It is difficult to separate the two components unambiguously but several fits using Lorentzian peaks suggest a model with a Drude peak having a plasma frequency of 1.6 to 2.1 eV and a midinfrared peak with a plasma frequency of 2.5 eV. Detailed analysis of the frequency dependent scattering rate shows that the charge carriers interact with a broad bosonic spectrum extending beyond 100 meV with a very large coupling constant lambda=3.4 at low temperature. As the temperature increases this coupling weakens to lambda=0.78 at ambient temperature. This suggests a bosonic spectrum that is similar to what is seen in the lower Tc cuprates.
Nature Communications | 2014
I. Kézsmárki; D. Szaller; S. Bordács; Vilmos Kocsis; Y. Tokunaga; Y. Taguchi; H. Murakawa; Yoshinori Tokura; H. Engelkamp; Toomas Room; Urmas Nagel
The coupling between spins and electric dipoles governs magnetoelectric phenomena in multiferroics. The dynamical magnetoelectric effect, which is an inherent attribute of the spin excitations in multiferroics, drastically changes the optical properties of these compounds compared with conventional materials where light-matter interaction is expressed only by the dielectric permittivity or magnetic permeability. Here we show via polarized terahertz spectroscopy studies on multiferroic Ca2CoSi2O7, Sr2CoSi2O7 and Ba2CoGe2O7 that such magnetoeletric spin excitations exhibit quadrochroism, that is, they have different colours for all the four combinations of the two propagation directions (forward or backward) and the two orthogonal polarizations of a light beam. We demonstrate that one-way transparency can be realized for spin-wave excitations with sufficiently strong optical magnetoelectric effect. Furthermore, the transparent and absorbing directions of light propagation can be reversed by external magnetic fields. This magnetically controlled optical-diode function of magnetoelectric multiferroics may open a new horizon in photonics.
Physical Review Letters | 2003
Tomislav Vuletić; Bojana Korin-Hamzić; S. Tomić; B. P. Gorshunov; P. Haas; Toomas Room; Martin Dressel; Jun Akimitsu; T. Sasaki; T. Nagata
The charge response in the spin chain and/or ladder compound Sr14-xCaxCu24O41 is characterized by dc resistivity, low-frequency dielectric spectroscopy and optical spectroscopy. We identify a phase transition below which a charge-density wave (CDW) develops in the ladder arrays. Calcium doping suppresses this phase with the transition temperature decreasing from 210 K for x=0 to 10 K for x=9, and the CDW gap from 130 meV down to 3 meV, respectively. This suppression is due to the worsened nesting originating from the increase of the interladder tight-binding hopping integrals, as well as from disorder introduced at the Sr sites. These results altogether speak in favor of two-dimensional superconductivity under pressure.
Physical Review B | 2002
B. P. Gorshunov; P. Haas; Toomas Room; Martin Dressel; Tomislav Vuletić; Bojana Korin-Hamzić; S. Tomić; Jun Akimitsu; T. Nagata
The electrodynamic response of the spin-ladder compound Sr
Physical Review B | 2000
Toomas Room; Urmas Nagel; E. Lippmaa; Hiroshi Kageyama; K. Onizuka; Y. Ueda
_{14-x}