Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torbjørn Ergon is active.

Publication


Featured researches published by Torbjørn Ergon.


Science | 2006

Rapid Advance of Spring Arrival Dates in Long-Distance Migratory Birds

Niclas Jonzén; Andreas Lindén; Torbjørn Ergon; Endre Knudsen; Jon Olav Vik; Diego Rubolini; Dario Piacentini; Christian N. Brinch; Fernando Spina; Lennart Karlsson; Martin Stervander; Arne Andersson; Jonas Waldenström; Aleksi Lehikoinen; Erik Edvardsen; Rune Solvang; Nils Chr. Stenseth

Several bird species have advanced the timing of their spring migration in response to recent climate change. European short-distance migrants, wintering in temperate areas, have been assumed to be more affected by change in the European climate than long-distance migrants wintering in the tropics. However, we show that long-distance migrants have advanced their spring arrival in Scandinavia more than short-distance migrants. By analyzing a long-term data set from southern Italy, we show that long-distance migrants also pass through the Mediterranean region earlier. We argue that this may reflect a climate-driven evolutionary change in the timing of spring migration.


Nature | 2001

Life-history traits of voles in a fluctuating population respond to the immediate environment.

Torbjørn Ergon; Xavier Lambin; Nils Chr. Stenseth

Life-history traits relating to growth and reproduction vary greatly among species and populations and among individuals within populations. In vole populations, body size and age at maturation may vary considerably among locations and among years within the same location. Individuals in increasing populations are typically larger and start reproduction earlier in the spring than those in declining populations. The cause of such life-history variation within populations has been subject of much discussion. Much of the controversy concerns whether the memory of past conditions, leading to delayed effects on life-history traits, resides in the environment (for example, predators, pathogens or food) or intrinsically within populations or individuals (age distribution, physiological state, genetic or maternal effects). Here we report from an extensive field transplant experiment in which voles were moved before the breeding season between sites that differed in average overwintering body mass. Transplanted voles did not retain the characteristics of their source population, and we demonstrate an over-riding role of the immediate environment in shaping life-history traits of small rodents.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Resting and daily energy expenditures of free-living field voles are positively correlated but reflect extrinsic rather than intrinsic effects

John R. Speakman; Torbjørn Ergon; Rachel Cavanagh; Karen Reid; David Scantlebury; Xavier Lambin

Resting metabolic rates at thermoneutral (RMRts) are unexpectedly variable. One explanation is that high RMRts intrinsically potentiate a greater total daily energy expenditure (DEE), but recent work has suggested that DEE is extrinsically defined by the environment, which independently affects RMRt. This extrinsic effect could occur because expenditure is forced upwards in poor habitats or enabled to rise in good habitats. We provide here an intraspecific test for an association between RMRt and DEE that separates intrinsic from extrinsic effects and forcing from enabling effects. We measured the DEE and RMRt of 75 free-living short-tailed field voles at two time points in late winter. Across all sites, there was a positive link between individual variation in RMRt and DEE. This correlation, however, emerged only because of an effect across sites, rather than because of an intrinsic association within sites. We defined site quality from the survivorship of voles at the sites and the time at which they commenced breeding in spring. The associations between DEE/RMRt and site quality suggested that in February voles in poorer sites had higher energy demands, indicating that DEE was forced upwards, but in March the opposite was true, with higher demands in good sites, indicating that high expenditure was enabled. These data show that daily energy demands are extrinsically defined, with a link to RMRt that is secondary or independent. Both forcing and enabling effects of the environment may pertain at different times of year.


Journal of Clinical Microbiology | 2002

Mycobacterium microti Infection (Vole Tuberculosis) in Wild Rodent Populations

Rachel Cavanagh; Michael Begon; M. Bennett; Torbjørn Ergon; Isla M. Graham; Petra E. W. de Haas; C. A. Hart; Marianne Koedam; Kristin Kremer; Xavier Lambin; Paul Roholl; Dick van Soolingen

ABSTRACT Mycobacterium microti (vole tuberculosis) infections in small wild mammals were first described more than 60 years ago in several populations in Great Britain. Few studies of vole tuberculosis have been undertaken since then, and little is known about the relationship between M. microti isolates originating from different populations or at different times or of the prevalence of this infection in wild rodent populations, despite human cases of M. microti infections being increasingly reported. In this study, field voles (Microtus agrestis), bank voles (Clethrionomys glareolus), and wood mice (Apodemus sylvaticus) were found to be infected, with up to 8% having external tuberculous signs, in wild populations in Northumberland and Cheshire, England. Spoligotyping applied directly to the clinical material simultaneously detected and typed M. microti bacteria in skin lesions, lymph glands, and internal abcesses. IS6110 restriction fragment length polymorphism typing of cultured bacteria was used to compare these isolates with previously isolated strains from both animals and humans. This demonstrated that although the current rodent isolates were distinct from those isolated from voles in the 1930s in Great Britain, they had a high degree of similarity to these strains and were distinct from the M. microti isolates from humans, a pig, and a ferret from The Netherlands. Thus, M. microti infection seems to be widespread in wild rodent populations, but more studies are needed to understand how M. microti might be transmitted from animals to humans and to determine better the zoonotic risk posed.


Proceedings - Royal Society of London. Biological sciences | 2004

Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti).

Rachel Cavanagh; Xavier Lambin; Torbjørn Ergon; M. Bennett; Isla M. Graham; Dick van Soolingen; Michael Begon

The possible role of pathogens in rodent population cycles has been largely neglected since Eltons ‘epidemic hypothesis’ of 1931. To revisit this question, 12 adjacent, cyclic but out–of–phase populations of field voles (Microtus agrestis) in North East England were studied and the initial results are presented here. The prevalences of antibodies to cowpox virus and of clinical signs of Mycobacterium microti infection (vole tuberculosis) showed delayed (not direct) density dependence (with a lag of three to six months). This did not result from changes in population structure, even though there were such changes associated with the different phases of the cycle. The prevalences rose as vole numbers rose, and peaked as numbers declined. The apparent lag in the numerical response of infection prevalence to changes in host abundance is consistent with the hypothesis that diseases, singly or in combination, play a hitherto underestimated role in the dynamics of cyclic populations.


The American Naturalist | 2004

Optimal Body Size and Energy Expenditure during Winter: Why Are Voles Smaller in Declining Populations?

Torbjørn Ergon; John R. Speakman; Michael Scantlebury; Rachel Cavanagh; Xavier Lambin

Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade‐off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass‐specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.


Journal of Animal Ecology | 2010

Seasonal effects of Pacific-based climate on recruitment in a predator-limited large herbivore.

Troy M. Hegel; Atle Mysterud; Torbjørn Ergon; Leif Egil Loe; Falk Huettmann; Nils Chr. Stenseth

1. Climate is an important factor influencing the population dynamics of large herbivores operating directly on individuals or through its effect on forage characteristics. However, the seasonal effect of climate may differ between forage- and predator-limited populations because of a climatic influence on predation rates. The influence of climate on predator-limited large herbivores is less well known than on forage-limited populations. Further, the effect of Pacific-based climate on large herbivore populations has been rarely assessed. 2. We investigated the effect of the Pacific Decadal Oscillation (PDO), across different seasons, on recruitment in 10 populations (herds) of mountain-dwelling caribou Rangifer tarandus caribou L. in the Yukon Territory, Canada. These low-density populations occur in highly seasonal environments and are considered predator-limited with high neonatal calf mortality. Hence, in most years females do not spend resources through lactational support during the summer and resource intake is devoted to self-maintenance. We predicted that climate affecting environmental conditions at calving would have a strong effect on recruitment via its influence on predation rates. We also predicted that climatic conditions prior to conception could have an effect on recruitment through its influence on female fecundity. We modelled recruitment (n = 165) by seasonal PDO values using generalized linear mixed-effects models with herd-varying coefficients. 3. We found that recruitment variability was best explained by variation in winter climate (beta = 0.110, SE = 0.007) prior to birth (in utero) and May climate (beta = 0.013, SE = 0.006) at calving. There was little support for a pre-conception climate effect influencing female body condition and hence fecundity. These results confirm that recruitment in these populations is limited by predation and that forage-limitation is not a significant factor in their population dynamics. There was considerable variability in herd-specific relationships between the PDO and recruitment. Incorporating herd-specific characteristics, such as variable predator densities or terrain characteristics within a herd range, may shed greater light on the complex relationship between climate and ungulate population dynamics.


Science of The Total Environment | 2015

Responses of earthworms to repeated exposure to three biocides applied singly and as a mixture in an agricultural field

Lisbeth Schnug; Torbjørn Ergon; Lena Jakob; Janeck J. Scott-Fordsmand; Erik J. Joner; Hans Petter Leinaas

The study aimed at investigating effects of three differently acting biocides; the insecticide esfenvalerate, the fungicide picoxystrobin and the bactericide triclosan, applied individually and as a mixture, on an earthworm community in the field. A concentration-response design was chosen and results were analyzed using univariate and multivariate approaches. Effects on juvenile proportions were less pronounced and more variable than effects on abundance, but effects in general were species- and chemical-specific, and temporal variations distinct. Esfenvalerate and picoxystrobin appeared to elicit stronger effects than triclosan at laboratory-based ECx values, which is in accordance with our previous laboratory study on Eisenia fetida. The mixture affected abundance and juvenile proportions, but the latter only at high mixture concentrations. Esfenvalerate and picoxystrobin appeared to be the main drivers for the mixtures toxicity. Species-specific toxicity patterns question the reliability of mixture toxicity predictions derived on E. fetida for field earthworms. Biocide concentrations equaling EC50s (reproduction) for E. fetida provoked effects on the field earthworms mainly exceeding 50%, indicating effect intensification from the laboratory to field as well as the influence of indirect effects produced by species interactions. The differing results of the present field study and the previous laboratory study imply that lower- and higher-tier studies may not be mutually exclusive, but to be used in complementary.


Archive | 2009

Estimating Latent Time of Maturation and Survival Costs of Reproduction in Continuous Time from Capture–Recapture Data

Torbjørn Ergon; Nigel G. Yoccoz; James D. Nichols

In many species, age or time of maturation and survival costs of reproduction may vary substantially within and among populations. We present a capture-mark-recapture model to estimate the latent individual trait distribution of time of maturation (or other irreversible transitions) as well as survival differences associated with the two states (representing costs of reproduction). Maturation can take place at any point in continuous time, and mortality hazard rates for each reproductive state may vary according to continuous functions over time. Although we explicitly model individual heterogeneity in age/time of maturation, we make the simplifying assumption that death hazard rates do not vary among individuals within groups of animals. However, the estimates of the maturation distribution are fairly robust against individual heterogeneity in survival as long as there is no individual level correlation between mortality hazards and latent time of maturation. We apply the model to biweekly capture–recapture data of overwintering field voles (Microtus agrestis) in cyclically fluctuating populations to estimate time of maturation and survival costs of reproduction. Results show that onset of seasonal reproduction is particularly late and survival costs of reproduction are particularly large in declining populations.


Ecoscience | 2007

Optimal onset of seasonal reproduction in stochastic environments : when should overwintering small rodents start breeding

Torbjørn Ergon

ABSTRACT Theories for optimal life history strategies in variable environments have until now focused on cases where the individuals have either no information about the environment (models maximizing geometric mean fitness) or full information about the environment (models predicting optimal reaction norms). In this paper I investigate the optimal time for multivoltine organisms to commence seasonal reproduction in a more general and realistic case where animals perceive the state of their environment through cues that are measured with varying degrees of precision. If there were only a trade-off between early reproduction and high reproductive success, and if animals had perfect information about their environment, it would be optimal to commence reproduction when the rate of change in reproductive success relative to its current value equals the difference between population growth during the reproductive and non-reproductive seasons. This implies that reproductive success at the optimum is independent of when (but not how) the environment improves over the season. However, because it is optimal to respond conservatively to uncertain cues, we should expect higher reproductive success during years when breeding conditions improve early than when they improve late. Nevertheless, a phenotypic correlation between reproductive success and timing of reproduction will probably not be detectable in a stochastic environment. Data from a cyclic population of field voles (Microtus agrestis L.) in northern England show a negative correlation between reproductive success and timing of reproduction among out-of-phase locations. Such a pattern may occur when there is a convex trade-off between pre-breeding survival and timing of reproduction, or if animals precipitate reproduction to avoid senescence when the environment improves late.

Collaboration


Dive into the Torbjørn Ergon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Lindén

Novia University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Olav Vik

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge