Torgeir Holen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Torgeir Holen.
FEBS Journal | 2014
Frode Norheim; Torgrim M. Langleite; Marit Hjorth; Torgeir Holen; Anders Kielland; Hans Kristian Stadheim; Hanne L. Gulseth; Kåre I. Birkeland; Jørgen Jensen; Christian A. Drevon
Irisin was first identified as a peroxisome proliferator‐activated receptor γ co‐activator‐1α (PGC‐1α) dependent myokine with the potential to induce murine brown‐fat‐like development of white adipose tissue. In humans, the regulatory effect of training on muscle FNDC5mRNA expression and subsequently irisin levels in plasma is more controversial. We recruited 26 inactive men (13 normoglycaemic and normal weight, controls; and 13 slightly hyperglycaemic and overweight, pre‐diabetes group) aged 40–65 years for a 12‐week intervention of combined endurance and strength training with four sessions of training per week. Before and after the 12‐week intervention period, participants were exposed to an acute endurance workload of 45 min at 70% of VO2max, and muscle biopsies were taken prior to and after exercise. Skeletal muscle mRNA for PGC1A and FNDC5 correlated and both PGC1A and FNDC5mRNA levels increased after 12 weeks of training in both control and pre‐diabetes subjects. Circulating irisin was reduced in response to 12 weeks of training, and was increased acutely (~1.2‐fold) just after acute exercise. Plasma concentration of irisin was higher in pre‐diabetes subjects compared with controls. There was little effect of 12 weeks of training on selected browning genes in subcutaneous adipose tissue. UCP1mRNA did not correlate with FNDC5 expression in subcutaneous adipose tissue or skeletal muscle or with irisin levels in plasma. We observed no enhancing effect of long‐term training on circulating irisin levels, and little or no effect of training on browning of subcutaneous white adipose tissue in humans.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Alexander S. Thrane; P. M. Rappold; Takumi Fujita; A. Torres; Lane K. Bekar; Takahiro Takano; Weiguo Peng; Fushun Wang; V. Rangroo Thrane; Rune Enger; Nadia Nabil Haj-Yasein; Øivind Skare; Torgeir Holen; Arne Klungland; Ole Petter Ottersen; M. Nedergaard; Erlend A. Nagelhus
Aquaporin-4 (AQP4) is a primary influx route for water during brain edema formation. Here, we provide evidence that brain swelling triggers Ca2+ signaling in astrocytes and that deletion of the Aqp4 gene markedly interferes with these events. Using in vivo two-photon imaging, we show that hypoosmotic stress (20% reduction in osmolarity) initiates astrocytic Ca2+ spikes and that deletion of Aqp4 reduces these signals. The Ca2+ signals are partly dependent on activation of P2 purinergic receptors, which was judged from the effects of appropriate antagonists applied to cortical slices. Supporting the involvement of purinergic signaling, osmotic stress was found to induce ATP release from cultured astrocytes in an AQP4-dependent manner. Our results suggest that AQP4 not only serves as an influx route for water but also is critical for initiating downstream signaling events that may affect and potentially exacerbate the pathological outcome in clinical conditions associated with brain edema.
Scientific Reports | 2015
Elke Albrecht; Frode Norheim; Bernd Thiede; Torgeir Holen; Tomoo Ohashi; Lisa Schering; Sindre Lee; Julia Brenmoehl; Selina Thomas; Christian A. Drevon; Harold P. Erickson; Steffen Maak
The myokine irisin is supposed to be cleaved from a transmembrane precursor, FNDC5 (fibronectin type III domain containing 5), and to mediate beneficial effects of exercise on human metabolism. However, evidence for irisin circulating in blood is largely based on commercial ELISA kits which are based on polyclonal antibodies (pAbs) not previously tested for cross-reacting serum proteins. We have analyzed four commercial pAbs by Western blotting, which revealed prominent cross-reactivity with non-specific proteins in human and animal sera. Using recombinant glycosylated and non-glycosylated irisin as positive controls, we found no immune-reactive bands of the expected size in any biological samples. A FNDC5 signature was identified at ~20 kDa by mass spectrometry in human serum but was not detected by the commercial pAbs tested. Our results call into question all previous data obtained with commercial ELISA kits for irisin, and provide evidence against a physiological role for irisin in humans and other species.
Genomics | 2008
Svein Erik Moe; Jan Gunnar Sørbø; Rikke Søgaard; Thomas Zeuthen; Ole Petter Ottersen; Torgeir Holen
Aquaporin-4 (AQP4) is a brain aquaporin implicated in the pathophysiology of numerous clinical conditions including brain edema. Here we show that rat AQP4 has six cDNA isoforms, formed by alternative splicing. These are named AQP4a-f, where AQP4a and AQP4c correspond to the two classical M1 and M23 isoforms, respectively. The various isoforms are differentially expressed in kidney and brain, and their prevalence does not correspond to the level of the respective mRNAs, pointing to posttranscriptional regulation. The three isoforms lacking exon 2, AQP4b, AQP4d, and AQP4f, have an intracellular localization when expressed in cell lines and do not transport water when expressed in Xenopus oocytes. In contrast, the largest of the new isoforms, AQP4e, which contains a novel N-terminal domain, is localized at the plasma membrane in cell lines and functions as a water transporter in Xenopus oocytes.
Biochemistry | 2008
Jan Gunnar Sørbø; Svein Erik Moe; Ole Petter Ottersen; Torgeir Holen
Square arrays are prominent structures in plasma membranes of brain, muscle, and kidneys with an unknown function. So far, the analysis of these arrays has been restricted to freeze fracture preparations, which have shown square arrays to contain the water channel Aquaporin-4 (AQP4). Using Blue-Native PAGE immunoblots, we provide evidence that higher-order AQP4 complexes correspond to square arrays, with the AQP4 isoform M23 playing a dominant role. Our data are consistent with the idea that square arrays consist of aggregates of AQP4 tetramers complexed with multiples of dimers. By comparison, Aquaporin-1 and Aquaporin-9 form tetramers, but not higher-order complexes. AQP4 square arrays are stable under several biochemical purification steps. Analyzing the internal composition of the higher-order complexes by 2D gels, we demonstrate that the square arrays in addition to M23 also invariably contain AQP4, M1, and a novel AQP4 isoform that we call Mz. The visualization AQP4 square arrays by a rapid, biochemical assay provides new insight in the molecular organization of square arrays and gives further proof of the heterogeneity of AQP4 square arrays in vivo.
Epilepsy Research | 2011
Anne-Catherine Lehre; Nicole M. Rowley; Yun Zhou; Silvia Holmseth; Caiying Guo; Torgeir Holen; R. Hua; Petter Laake; A.M. Olofsson; Irais Poblete-Naredo; D.A. Rusakov; Karsten K. Madsen; Rasmus P. Clausen; Arne Schousboe; H.S. White; Niels C. Danbolt
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian brain. Once released, it is removed from the extracellular space by cellular uptake catalyzed by GABA transporter proteins. Four GABA transporters (GAT1, GAT2, GAT3 and BGT1) have been identified. Inhibition of the GAT1 by the clinically available anti-epileptic drug tiagabine has been an effective strategy for the treatment of some patients with partial seizures. Recently, the investigational drug EF1502, which inhibits both GAT1 and BGT1, was found to exert an anti-convulsant action synergistic to that of tiagabine, supposedly due to inhibition of BGT1. The present study addresses the role of BGT1 in seizure control and the effect of EF1502 by developing and exploring a new mouse line lacking exons 3-5 of the BGT1 (slc6a12) gene. The deletion of this sequence abolishes the expression of BGT1 mRNA. However, homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test, and the i.v. pentylenetetrazol threshold test. We confirm that BGT1 mRNA is present in the brain, but find that the levels are several hundred times lower than those of GAT1 mRNA; possibly explaining the apparent lack of phenotype. In conclusion, the present results do not support a role for BGT1 in the control of seizure susceptibility and cannot provide a mechanistic understanding of the synergism that has been previously reported with tiagabine and EF1502.
Clinical Cancer Research | 2006
Mohammed Amarzguioui; Qian Peng; Merete Wiiger; Vlada Vasovic; Eshrat Babaie; Torgeir Holen; Jahn M. Nesland; Hans Prydz
Purpose: The coagulation trigger tissue factor has been implicated in tumor growth, angiogenesis, and metastasis. In this study, we explore the effects of ex vivo and in vivo delivery of short interfering RNA (siRNA) targeting tissue factor on B16 melanoma colonization of the lung in a murine model for metastasis. The purposes of this work are to establish a noncytotoxic in vivo model for investigation of tissue factor function and provide preclinical assessment of the therapeutic potential of tissue factor siRNA for prevention of metastasis. Experimental Design and Results: C57BL/6 mice were evaluated for pulmonary metastases following tail vein injection of B16 cells transfected with either active or inactive siRNA. Mice receiving cells transfected with active siRNA had significantly lower numbers of pulmonary tumors compared with mice injected with control cells (transfected with inactive siRNA). The average time point at which the mice started to exhibit tumor-associated stress was also increased significantly from 22 days for the control group to 27 days for the experimental group (P = 0.01). In a therapeutically more relevant model, where the siRNA was delivered i.p. and the cells (untransfected) by tail vein injection, an inhibitory effect on metastasis was observed when the siRNA treatment was initiated either before or at the time of cell injection. Conclusions: The results suggest that tissue factor has a crucial function in promoting lung tumor metastasis of blood-borne tumor cells in the early stages of the tumor take process and further suggest that treatment with tissue factor siRNA may become a viable clinical strategy for prevention of tumor metastasis.
Glia | 2013
Maja Potokar; Matjaž Stenovec; Jernej Jorgačevski; Torgeir Holen; Marko Kreft; Ole Petter Ottersen; Robert Zorec
Aquaporin 4 (AQP4) is the predominant water channel in the brain, expressed mainly in astrocytes and involved in water transport in physiologic and pathologic conditions. Besides the classical isoforms M1 (a) and M23 (c), additional ones may be present at the plasma membrane, such as the recently described AQP4b, d, e, and f. Water permeability regulation by AQP4 isoforms may involve several processes, such as channel conformational changes, the extent and arrangement of channels at the plasma membrane, and the dynamics of channel trafficking to/from the plasma membrane. To test whether vesicular trafficking affects the abundance of AQP4 channel at the plasma membrane, we studied the subcellular localization of AQP4 in correlation with vesicle mobility of AQP4e, one of the newly discovered AQP4 isoforms. In cultured rat astrocytes, recombinant AQP4e acquired plasma membrane localization, which resembled that of the antibody labeled endogenous AQP4 localization. Under conditions mimicking reactivation of astrocytes (increase in cytosolic cAMP) and brain edema, an increase in the AQP4 plasma membrane localization was observed. The cytoskeleton remained unaffected with the exception of rearranged actin filaments in the model of reactive astrocytes and vimentin meshwork depolymerization in hypoosmotic conditions. AQP4e vesicle mobility correlated with changes in the plasma membrane localization of AQP4 in all stimulated conditions. Hypoosmotic stimulation triggered a transient reduction in AQP4e vesicle mobility mirrored by the transient changes in AQP4 plasma membrane localization. We suggest that regulation of AQP4 surface expression in pathologic conditions is associated with the mobility of AQP4‐carrying vesicles.
Nutrients | 2012
Frode Norheim; Ingrid M.F. Gjelstad; Marit Hjorth; Kathrine J. Vinknes; Torgrim M. Langleite; Torgeir Holen; Jørgen Jensen; Knut Tomas Dalen; Anette Karlsen; Anders Kielland; Arild C. Rustan; Christian A. Drevon
In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases.
Biochemistry | 2009
Line Strand; Svein Erik Moe; Tom Tallak Solbu; Marianne Vaadal; Torgeir Holen
Aquaporin-4 (AQP4) is a water channel found at high concentrations around blood vessels in the brain and is organized into elaborate assemblies called square arrays. The natural functions of AQP4 and the square arrays remain unknown, but under pathophysiological conditions, AQP4 has been shown to influence brain edema, synapse function, and cellular migration. AQP4 was recently found to have six isoforms, where AQP4a (also known as M1), AQP4c (also known as M23), and AQP4e are functional water transport channels. Furthermore, by two-dimensional blue native polyacrylamide gel electrophoresis (BN-PAGE) analysis of the internal composition of square arrays, three distinct isoforms were visualized. Here we combine these advances in technique with mutational analysis to test a series of current hypotheses about AQP4 functional structure. We find that the square array destabilizing N-terminus of AQP4a is partly functional through the C13 and C17 amino acids, and not through R8 and R9. We find a discrepancy between our data and the proposed tetramer-tetramer binding site based on the in vitro AQP4 two-dimensional crystal structure. On the other hand, we find that isoforms AQP4a and AQP4e, while not being able to form square arrays alone, are able to interact with AQP4c and be incorporated into higher-order structures. Our results with the novel BN-PAGE analysis technique point toward a model in which the presence of accessory isoforms (AQP4a and AQP4e) regulates the square array assembly process of the main isoform, AQP4c.