Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Torkel Hafting is active.

Publication


Featured researches published by Torkel Hafting.


Nature | 2005

Microstructure of a spatial map in the entorhinal cortex

Torkel Hafting; Marianne Fyhn; Sturla Molden; May-Britt Moser; Edvard I. Moser

The ability to find ones way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the ‘grid cell’, which is activated whenever the animals position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.


Nature | 2009

Frequency of gamma oscillations routes flow of information in the hippocampus

Laura Lee Colgin; Tobias Denninger; Marianne Fyhn; Torkel Hafting; Tora Bonnevie; Ole Jensen; May-Britt Moser; Edvard I. Moser

Gamma oscillations are thought to transiently link distributed cell assemblies that are processing related information, a function that is probably important for network processes such as perception, attentional selection and memory. This ‘binding’ mechanism requires that spatially distributed cells fire together with millisecond range precision; however, it is not clear how such coordinated timing is achieved given that the frequency of gamma oscillations varies substantially across space and time, from ∼25 to almost 150 Hz. Here we show that gamma oscillations in the CA1 area of the hippocampus split into distinct fast and slow frequency components that differentially couple CA1 to inputs from the medial entorhinal cortex, an area that provides information about the animal’s current position, and CA3, a hippocampal subfield essential for storage of such information. Fast gamma oscillations in CA1 were synchronized with fast gamma in medial entorhinal cortex, and slow gamma oscillations in CA1 were coherent with slow gamma in CA3. Significant proportions of cells in medial entorhinal cortex and CA3 were phase-locked to fast and slow CA1 gamma waves, respectively. The two types of gamma occurred at different phases of the CA1 theta rhythm and mostly on different theta cycles. These results point to routeing of information as a possible function of gamma frequency variations in the brain and provide a mechanism for temporal segregation of potentially interfering information from different sources.


Nature | 2007

Hippocampal remapping and grid realignment in entorhinal cortex

Marianne Fyhn; Torkel Hafting; Alessandro Treves; May-Britt Moser; Edvard I. Moser

A fundamental property of many associative memory networks is the ability to decorrelate overlapping input patterns before information is stored. In the hippocampus, this neuronal pattern separation is expressed as the tendency of ensembles of place cells to undergo extensive ‘remapping’ in response to changes in the sensory or motivational inputs to the hippocampus. Remapping is expressed under some conditions as a change of firing rates in the presence of a stable place code (‘rate remapping’), and under other conditions as a complete reorganization of the hippocampal place code in which both place and rate of firing take statistically independent values (‘global remapping’). Here we show that the nature of hippocampal remapping can be predicted by ensemble dynamics in place-selective grid cells in the medial entorhinal cortex, one synapse upstream of the hippocampus. Whereas rate remapping is associated with stable grid fields, global remapping is always accompanied by a coordinate shift in the firing vertices of the grid cells. Grid fields of co-localized medial entorhinal cortex cells move and rotate in concert during this realignment. In contrast to the multiple environment-specific representations coded by place cells in the hippocampus, local ensembles of grid cells thus maintain a constant spatial phase structure, allowing position to be represented and updated by the same translation mechanism in all environments encountered by the animal.


Science | 2008

Finite scale of spatial representation in the hippocampus.

Kirsten Brun Kjelstrup; Trygve Solstad; Vegard Heimly Brun; Torkel Hafting; Stefan Leutgeb; Menno P. Witter; Edvard I. Moser; May-Britt Moser

To determine how spatial scale is represented in the pyramidal cell population of the hippocampus, we recorded neural activity at multiple longitudinal levels of this brain area while rats ran back and forth on an 18-meter-long linear track. CA3 cells had well-defined place fields at all levels. The scale of representation increased almost linearly from <1 meter at the dorsal pole to ∼10 meters at the ventral pole. The results suggest that the place-cell map includes the entire hippocampus and that environments are represented in the hippocampus at a topographically graded but finite continuum of scales.


Nature | 2008

Hippocampus-independent phase precession in entorhinal grid cells

Torkel Hafting; Marianne Fyhn; Tora Bonnevie; May-Britt Moser; Edvard I. Moser

Theta-phase precession in hippocampal place cells is one of the best-studied experimental models of temporal coding in the brain. Theta-phase precession is a change in spike timing in which the place cell fires at progressively earlier phases of the extracellular theta rhythm as the animal crosses the spatially restricted firing field of the neuron. Within individual theta cycles, this phase advance results in a compressed replication of the firing sequence of consecutively activated place cells along the animal’s trajectory, at a timescale short enough to enable spike-time-dependent plasticity between neurons in different parts of the sequence. The neuronal circuitry required for phase precession has not yet been established. The fact that phase precession can be seen in hippocampal output stuctures such as the prefrontal cortex suggests either that efferent structures inherit the precession from the hippocampus or that it is generated locally in those structures. Here we show that phase precession is expressed independently of the hippocampus in spatially modulated grid cells in layer II of medial entorhinal cortex, one synapse upstream of the hippocampus. Phase precession is apparent in nearly all principal cells in layer II but only sparsely in layer III. The precession in layer II is not blocked by inactivation of the hippocampus, suggesting that the phase advance is generated in the grid cell network. The results point to possible mechanisms for grid formation and raise the possibility that hippocampal phase precession is inherited from entorhinal cortex.


Nature Neuroscience | 2013

Grid cells require excitatory drive from the hippocampus

Tora Bonnevie; Benjamin Dunn; Marianne Fyhn; Torkel Hafting; Dori Derdikman; John L Kubie; Yasser Roudi; Edvard I. Moser; May-Britt Moser

To determine how hippocampal backprojections influence spatially periodic firing in grid cells, we recorded neural activity in the medial entorhinal cortex (MEC) of rats after temporary inactivation of the hippocampus. We report two major changes in entorhinal grid cells. First, hippocampal inactivation gradually and selectively extinguished the grid pattern. Second, the same grid cells that lost their grid fields acquired substantial tuning to the direction of the rats head. This transition in firing properties was contingent on a drop in the average firing rate of the grid cells and could be replicated by the removal of an external excitatory drive in an attractor network model in which grid structure emerges by velocity-dependent translation of activity across a network with inhibitory connections. These results point to excitatory drive from the hippocampus, and possibly other regions, as one prerequisite for the formation and translocation of grid patterns in the MEC.


Nature Neuroscience | 2009

Fragmentation of grid cell maps in a multicompartment environment

Dori Derdikman; Jonathan R. Whitlock; Albert Tsao; Marianne Fyhn; Torkel Hafting; May-Britt Moser; Edvard I. Moser

To determine whether entorhinal spatial representations are continuous or fragmented, we recorded neural activity in grid cells while rats ran through a stack of interconnected, zig-zagged compartments of equal shape and orientation (a hairpin maze). The distribution of spatial firing fields was markedly similar across all compartments in which running occurred in the same direction, implying that the grid representation was fragmented into repeating submaps. Activity at neighboring positions was least correlated at the transitions between different arms, indicating that the map split regularly at the turning points. We saw similar discontinuities among place cells in the hippocampus. No fragmentation was observed when the rats followed similar trajectories in the absence of internal walls, implying that stereotypic behavior alone cannot explain the compartmentalization. These results indicate that spatial environments are represented in entorhinal cortex and hippocampus as a mosaic of discrete submaps that correspond to the geometric structure of the space.


Hippocampus | 2008

Grid cells in mice

Marianne Fyhn; Torkel Hafting; Menno P. Witter; Edvard I. Moser; May-Britt Moser

The medial entorhinal cortex (EC) is a part of the neural network for the representation of self‐location in the rat. The key cell type of this system is the grid cell, whose multiple firing fields span the environment in a remarkably regular triangular or hexagonal pattern. The basic properties of grid cells and other cell types have been described, but the neuronal mechanisms responsible for the formation and maintenance of the place code remain elusive. These mechanisms can be investigated by genetic intervention strategies, where specific components of the entorhinal‐hippocampal network are activated or silenced. Because of the common use of knockout mice for such targeted interventions, we asked if grid activity is expressed also in the mouse. Principal neurons in the superficial layers of mouse medial EC had stable grid fields similar to those of the rat. Neighboring grid cells shared a common spacing and orientation but had a different spatial phase, such that a small number of grid cells collectively represented all locations in the environment. The spacing of the grid increased with distance from the dorsal border of the medial EC. The lowest values for grid spacing, recorded at the dorsal end, were comparable to those of the rat, suggesting that grid fields do not scale up proportionally with body size. Grid cells were colocalized with head‐direction cells and conjunctive place × head‐direction cells, as in the rat. The demonstration of grid cells in mice prepares the ground for transgenic analyses of the entorhinal‐hippocampal network.


The Journal of Neuroscience | 2017

Removal of Perineuronal Nets Unlocks Juvenile Plasticity Through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity

Kristian Kinden Lensjø; Mikkel Elle Lepperød; Gunnar Dick; Torkel Hafting; Marianne Fyhn

Perineuronal nets (PNNs) are extracellular matrix structures mainly enwrapping parvalbumin-expressing inhibitory neurons. The assembly of PNNs coincides with the end of the period of heightened visual cortex plasticity in juveniles, whereas removal of PNNs in adults reopens for plasticity. The mechanisms underlying this phenomenon remain elusive. We have used chronic electrophysiological recordings to investigate accompanying electrophysiological changes to activity-dependent plasticity and we report on novel mechanisms involved in both induced and critical period plasticity. By inducing activity-dependent plasticity in the visual cortex of adult rats while recording single unit and population activity, we demonstrate that PNN removal alters the balance between inhibitory and excitatory spiking activity directly. Without PNNs, inhibitory activity was reduced, whereas spiking variability was increased as predicted in a simulation with a Brunel neural network. Together with a shift in ocular dominance and large effects on unit activity during the first 48 h of monocular deprivation (MD), we show that PNN removal resets the neural network to an immature, juvenile state. Furthermore, in PNN-depleted adults as well as in juveniles, MD caused an immediate potentiation of gamma activity, suggesting a novel mechanism initiating activity-dependent plasticity and driving the rapid changes in unit activity. SIGNIFICANCE STATEMENT Emerging evidence suggests a role for perineuronal nets (PNNs) in learning and regulation of plasticity, but the underlying mechanisms remain unresolved. Here, we used chronic in vivo extracellular recordings to investigate how removal of PNNs opens for plasticity and how activity-dependent plasticity affects neural activity over time. PNN removal caused reduced inhibitory activity and reset the network to a juvenile state. Experimentally induced activity-dependent plasticity by monocular deprivation caused rapid changes in single unit activity and a remarkable potentiation of gamma oscillations. Our results demonstrate how PNNs may be involved directly in stabilizing the neural network. Moreover, the immediate potentiation of gamma activity after plasticity onset points to potential new mechanisms for the initiation of activity-dependent plasticity.


Acta Physiologica | 2006

Hypotonic stress activates BK channels in clonal kidney cells via purinergic receptors, presumably of the P2Y1 subtype

Torkel Hafting; Trude M. Haug; S. Ellefsen; Olav Sand

Aim:  Membrane stretch due to cell swelling may cause a minute leakage of adenosine triphosphate (ATP) that stimulates endogenous purinergic receptors. The following elevation of the cytosolic‐free Ca2+ concentration ([Ca2+]i) may then participate in cell volume regulation. The aim of the present study was to test if purinergic receptors and large conductance Ca2+ activated K+ (BK) channels are activated in response to hypotonic stress in clonal kidney cells (Vero cells).

Collaboration


Dive into the Torkel Hafting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaute T. Einevoll

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge