Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toru Hosoi is active.

Publication


Featured researches published by Toru Hosoi.


Molecular Pharmacology | 2008

Endoplasmic reticulum stress induces leptin resistance

Toru Hosoi; Miyako Sasaki; Tsuyoshi Miyahara; Chie Hashimoto; Suguru Matsuo; Michiko Yoshii; Koichiro Ozawa

Leptin is an important circulating signal for inhibiting food intake and body weight gain. In recent years, “leptin resistance” has been considered to be one of the main causes of obesity. However, the detailed mechanisms of leptin resistance are poorly understood. Increasing evidence has suggested that stress signals, which impair endoplasmic reticulum (ER) function, lead to an accumulation of unfolded proteins, which results in ER stress. In the present study, we hypothesized that ER stress is involved in leptin resistance. Tunicamycin, thapsigargin, or brefeldin A was used to induce ER stress. The activation status of leptin signals was measured by Western blotting analysis using a phospho-(Tyr705) signal transducer and activator of transcription 3 (STAT3) antibody. We observed that ER stress markedly inhibited leptin-induced STAT3 phosphorylation. In contrast, ER stress did not affect leptin-induced c-Jun NH2-terminal kinase activation. These results suggest that ER stress induces leptin resistance. ER stress-induced leptin resistance was mediated through protein tyrosine phosphatase 1B but not through suppressors of cytokine signaling 3. It is noteworthy that a chemical chaperone, which could improve the protein-folding capacity, reversed ER stress-induced leptin resistance. Moreover, homocysteine, which induces ER stress, caused leptin resistance both in vitro and in vivo. Together, these findings suggest that the pathological mechanism of leptin resistance is derived from ER stress.


Clinical Science | 2010

Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities

Toru Hosoi; Koichiro Ozawa

Various stresses, which impair ER (endoplasmic reticulum) function, lead to an accumulation of unfolded or misfolded proteins. ER stress triggers many rescuer responses, including a UPR (unfolded protein response). Increasing evidence has suggested that ER stress is involved in neurodegenerative diseases (Alzheimers disease, Parkinsons disease and cerebral ischaemic insults), cancer, obesity and diabetes. In the present review, we consider the importance of ER stress under pathological conditions in mammals. Furthermore, we discuss the therapeutic potential for treatment targeting ER stress.


Autonomic Neuroscience: Basic and Clinical | 2005

Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion.

Toru Hosoi; Yasunobu Okuma; Tadashi Matsuda; Yasuyuki Nomura

The afferent vagus nerve has been suggested to be an important component for transmitting peripheral immune signals to the brain. However, there is inconsistent evidence showing that subdiaphragmatic vagotomy did not inhibit the brain mediated behavioral and neural effects induced by the peripheral application of lipopolysaccharide (LPS). LPS triggers innate immune cells through Toll-like receptor 4 (TLR4). In the present study, we found that TLR4 mRNA and protein was expressed in the rat nodose ganglion. Thus, it is suggested that LPS could activate afferent vagus nerve at the level of nodose ganglion, which exists centrally from the subdiaphragmatic level of vagus nerve. The results could provide evidence for the novel pathway of LPS-induced afferent vagus nerve activation.


PLOS ONE | 2010

Myeloid Differentiation Factor 88 (MyD88)-Deficiency Increases Risk of Diabetes in Mice

Toru Hosoi; Shota Yokoyama; Suguru Matsuo; Shizuo Akira; Koichiro Ozawa

Background Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR) 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88) is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD)-induced obesity. Methodology/Principal Findings In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP), which were linked to the onset of severe diabetes. On the other hand, TNF-α would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-α level was attenuated in MyD88-deficient mice fed with HFD. Conclusions/Significance The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.


Brain Research | 2007

Akt up- and down-regulation in response to endoplasmic reticulum stress.

Toru Hosoi; Kanae Hyoda; Yasunobu Okuma; Yasuyuki Nomura; Koichiro Ozawa

Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of CNS diseases such as Alzheimers disease, Parkinsons disease, and cerebral ischemia. In the present study, we found that Akt activation is regulated dually by ER stress in primary cultured glial cells. We observed that Akt activation was increased by short-term exposure to ER stress but was down-regulated by long-term exposure to ER stress. ER stress-induced Akt activation was mediated through phosphatidylinositol 3-kinase (PI3K) because the PI3K inhibitors, LY294002 and wortmannin, inhibited Akt activation. Moreover, Akt was localized in the ER, as assessed by immunohistochemistry, and ER stress increased microsomally localized Akt activation. These results suggest that Akt plays an important role in stress conditions, which impair ER function.


Brain Research | 2002

Leptin regulates interleukin-1β expression in the brain via the STAT3-independent mechanisms

Toru Hosoi; Yasunobu Okuma; Yasuyuki Nomura

Leptin is known to be an important circulating signal for regulation of food intake and body weight. These effects were suggested to be mediated through the hypothalamic center via the Ob-Rb receptor (long isoform of leptin receptor). Although short isoforms of leptin receptor exist in many regions of the brain, there has been little in vivo functional study of these areas such as for leptins target site. We report here that peripherally applied leptin increased interleukin (IL)-1beta transcripts in many regions of the brain such as the hypothalamus, the hippocampus, the cortex, the cerebellum and the brainstem. Although leptin did not induce STAT3 activation or suppressor of cytokine signaling3 (SOCS3) expression in the hypothalamus of the db/db mice, which lack a functional Ob-Rb receptor, leptin increased the IL-1beta levels to similar extents as normal mice. Therefore, a novel function of leptin is suggested as the induction of IL-1beta expression in many regions of the brain via STAT3-independent mechanisms.


Life Sciences | 2003

The presence and functions of muscarinic receptors in human T cells: the involvement in IL-2 and IL-2 receptor system

Jun Nomura; Toru Hosoi; Yasunobu Okuma; Yasuyuki Nomura

The existence and functions of muscarinic acetylcholine (mACh) receptors in human T lymphocytes were investigated. RT-PCR analysis demonstrated the presence of M(1) and M(2) subtypes of mACh receptors in human T lymphocytes. Pretreatment with oxotremorine-M (Oxo-M) caused the increase in phytohemagglutinin-induced IL-2 production. Since 4-DAMP suppressed Oxo-M-caused enhancement in IL-2 production, M(1) receptors seem to be involved in the enhancement of the production. Oxo-M stimulated IL-2 receptor mRNA expression and DNA synthesis. Our results suggest that muscarinic receptors, perhaps M(1) receptors are involved in the enhancement of TCR-induced IL-2 production and IL-2 receptor expression in human T lymphocytes. Thus muscarinic receptors positively modulate cell growth in human T lymphocytes by the autocrine mechanism through enhancing expression of both IL-2 and the receptors.


Current Drug Targets - Inflammation & Allergy | 2002

The Mechanisms of Immune-to-Brain Communication in Inflammation as a Drug Target

Toru Hosoi; Yasunobu Okuma; Yasuyuki Nomura

There is considerable evidence that the peripheral immune system can signal the brain to elicit a sickness response during infection and inflammation. The induction of the sickness response involves the expression of proinflammatory cytokines such as interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and IL-6, both in the periphery and in the brain. The mechanisms by which peripheral cytokines can affect brain function have been the subject of much debate. The precise mechanisms by which cytokines signal the central nervous system (CNS) are unknown, but possibilities include: 1) the direct entry of cytokine into the brain across the blood-brain barrier by a saturable transport mechanism: 2) the interaction of cytokine with circumventricular organs such as the orgnum vasculosum of the lamina terminalis [OVLT] and area postrema, which lack the blood-brain barrier; and 3) activation of afferent neurons of the vagus nerve. Increasing evidence has suggested that the afferent vagus nerve is an important pathway for immune-to-brain communication. However, there are inconsistent findings for the involvement of the afferent vagus nerve in the mediation of transmitting inflammatory signals to the brain. Thus, we describe here the functional relevance of the vagal afferent nerve in mediating these effects. An understanding of the mechanisms involved in immune-to-brain communication should permit us to create new drugs as therapeutic targets to decrease sickness or promote recovery. This review focuses on recent discoveries of the multipathway mechanisms for the induction of sickness behavior mediated through neuroimmune interactions in the CNS.


American Journal of Pathology | 2010

Potential Down-Regulation of Salivary Gland AQP5 by LPS via Cross-Coupling of NF-κB and p-c-Jun/c-Fos

Chenjuan Yao; Nunuk Purwanti; Mileva Ratko Karabasil; Ahmad Azlina; Purevjav Javkhlan; Takahiro Hasegawa; Tetsuya Akamatsu; Toru Hosoi; Koichiro Ozawa; Kazuo Hosoi

The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

MyD88 plays a key role in LPS-induced STAT3 activation in the hypothalamus.

Yosuke Yamawaki; Hitomi Kimura; Toru Hosoi; Koichiro Ozawa

Infection causes the production of proinflammatory cytokines, which act on the central nervous system (CNS) and can result in fever, sleep disorders, depression-like behavior, and even anorexia, although precisely how cytokines regulate the functions of the CNS remain unclear. In the present study, we investigated the regulatory-molecular mechanisms by which cytokines affect hypothalamic function in a state of infection. The intraperitoneal administration of lipopolysaccharide (LPS), a ligand of Toll-like receptor 4 (TLR4), time-dependently (2-24 h) increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in the hypothalamus and liver, which corresponded with anorexia observed within 24 h. Interestingly, the pattern of phosphorylation in response to LPS differed between the hypothalamus and liver. In the hypothalamus, LPS increased STAT3 phosphorylation from 2 h, with a peak at 4 h and a decline thereafter, whereas, in the liver, the peak activation of STAT3 persisted from 2 to 8 h. The time course of the LPS-induced expression of suppressor of cytokine signaling 3 (SOCS3), a STAT3-induced negative regulator of the Janus kinase-STAT pathway, was similar to that of STAT3 phosphorylation. Using mice deficient in myeloid differentiation primary-response protein 88 (MyD88), an adapter protein of TLR4, we found that LPS-induced STAT3 phosphorylation and SOCS3 expression in the hypothalamus and liver were predominantly mediated through MyD88. Moreover, we observed that MyD88-deficient mice were resistant to LPS-induced anorexia. Taken together, our findings reveal a novel mechanism, i.e., MyD88 plays a key role in mediating STAT3 phosphorylation and anorexia in the CNS in a state of infection and inflammation.

Collaboration


Dive into the Toru Hosoi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge