Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toru Yada is active.

Publication


Featured researches published by Toru Yada.


Science | 2011

Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites

Tomoki Nakamura; Takaaki Noguchi; Masahiko Tanaka; Michael E. Zolensky; Makoto Kimura; Akira Tsuchiyama; Aiko Nakato; Toshihiro Ogami; Hatsumi Ishida; Masayuki Uesugi; Toru Yada; Kei Shirai; Akio Fujimura; Ryuji Okazaki; Scott A. Sandford; Yukihiro Ishibashi; Masanao Abe; Tatsuaki Okada; Munetaka Ueno; T. Mukai; Makoto Yoshikawa; Junichiro Kawaguchi

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. The Hayabusa spacecraft successfully recovered dust particles from the surface of near-Earth asteroid 25143 Itokawa. Synchrotron-radiation x-ray diffraction and transmission and scanning electron microscope analyses indicate that the mineralogy and mineral chemistry of the Itokawa dust particles are identical to those of thermally metamorphosed LL chondrites, consistent with spectroscopic observations made from Earth and by the Hayabusa spacecraft. Our results directly demonstrate that ordinary chondrites, the most abundant meteorites found on Earth, come from S-type asteroids. Mineral chemistry indicates that the majority of regolith surface particles suffered long-term thermal annealing and subsequent impact shock, suggesting that Itokawa is an asteroid made of reassembled pieces of the interior portions of a once larger asteroid.


Science | 2011

Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith

Akira Tsuchiyama; Masayuki Uesugi; Takashi Matsushima; Tatsuhiro Michikami; Toshihiko Kadono; Tomoki Nakamura; Kentaro Uesugi; Tsukasa Nakano; Scott A. Sandford; Ryo Noguchi; T. Matsumoto; Junya Matsuno; Takashi Nagano; Y. Imai; Akihisa Takeuchi; Yoshio Suzuki; Toshihiro Ogami; Jun Katagiri; Mitsuru Ebihara; Trevor R. Ireland; Fumio Kitajima; Keisuke Nagao; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Hisayoshi Yurimoto; Michael E. Zolensky; T. Mukai; Masanao Abe; Toru Yada

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. Regolith particles on the asteroid Itokawa were recovered by the Hayabusa mission. Their three-dimensional (3D) structure and other properties, revealed by x-ray microtomography, provide information on regolith formation. Modal abundances of minerals, bulk density (3.4 grams per cubic centimeter), and the 3D textures indicate that the particles represent a mixture of equilibrated and less-equilibrated LL chondrite materials. Evidence for melting was not seen on any of the particles. Some particles have rounded edges. Overall, the particles’ size and shape are different from those seen in particles from the lunar regolith. These features suggest that meteoroid impacts on the asteroid surface primarily form much of the regolith particle, and that seismic-induced grain motion in the smooth terrain abrades them over time.


Science | 2011

Incipient Space Weathering Observed on the Surface of Itokawa Dust Particles

Takaaki Noguchi; Tomoki Nakamura; Makoto Kimura; Michael E. Zolensky; Masahiko Tanaka; Takahito Hashimoto; Mitsuru Konno; Aiko Nakato; Toshihiro Ogami; Akio Fujimura; Masanao Abe; Toru Yada; T. Mukai; Munetaka Ueno; Takashi Okada; Kei Shirai; Yukihiro Ishibashi; Ryuji Okazaki

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. The reflectance spectra of the most abundant meteorites, ordinary chondrites, are different from those of the abundant S-type (mnemonic for siliceous) asteroids. This discrepancy has been thought to be due to space weathering, which is an alteration of the surfaces of airless bodies exposed to the space environment. Here we report evidence of space weathering on particles returned from the S-type asteroid 25143 Itokawa by the Hayabusa spacecraft. Surface modification was found in 5 out of 10 particles, which varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles exist in a thin (5 to 15 nanometers) surface layer on olivine, low-Ca pyroxene, and plagioclase, which is suggestive of vapor deposition. Sulfur-free Fe-rich nanoparticles exist deeper inside (<60 nanometers) ferromagnesian silicates. Their texture suggests formation by metamictization and in situ reduction of Fe2+.


Science | 2011

Oxygen Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

Hisayoshi Yurimoto; Kenichi Abe; Masanao Abe; Mitsuru Ebihara; Akio Fujimura; Minako Hashiguchi; Ko Hashizume; Trevor R. Ireland; Shoichi Itoh; Juri Katayama; Chizu Kato; Junichiro Kawaguchi; Noriyuki Kawasaki; Fumio Kitajima; Sachio Kobayashi; Tatsuji Meike; T. Mukai; Keisuke Nagao; Tomoki Nakamura; Hiroshi Naraoka; Takaaki Noguchi; Ryuji Okazaki; Changkun Park; Naoya Sakamoto; Yusuke Seto; Masashi Takei; Akira Tsuchiyama; Masayuki Uesugi; Shigeyuki Wakaki; Toru Yada

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. Meteorite studies suggest that each solar system object has a unique oxygen isotopic composition. Chondrites, the most primitive of meteorites, have been believed to be derived from asteroids, but oxygen isotopic compositions of asteroids themselves have not been established. We measured, using secondary ion mass spectrometry, oxygen isotopic compositions of rock particles from asteroid 25143 Itokawa returned by the Hayabusa spacecraft. Compositions of the particles are depleted in 16O relative to terrestrial materials and indicate that Itokawa, an S-type asteroid, is one of the sources of the LL or L group of equilibrated ordinary chondrites. This is a direct oxygen-isotope link between chondrites and their parent asteroid.


Science | 2011

Irradiation History of Itokawa Regolith Material Deduced from Noble Gases in the Hayabusa Samples

Keisuke Nagao; Ryuji Okazaki; Tomoki Nakamura; Yayoi N. Miura; Takahito Osawa; Ken Ichi Bajo; Shintaro Matsuda; Mitsuru Ebihara; Trevor R. Ireland; Fumio Kitajima; Hiroshi Naraoka; Takaaki Noguchi; Akira Tsuchiyama; Hisayoshi Yurimoto; Michael E. Zolensky; Masayuki Uesugi; Kei Shirai; Masanao Abe; Toru Yada; Yukihiro Ishibashi; Akio Fujimura; T. Mukai; Munetaka Ueno; Tatsuaki Okada; Makoto Yoshikawa; Junichiro Kawaguchi

Laboratory analysis of samples returned from an asteroid establishes a direct link between asteroids and meteorites and provides clues to the complex history of the asteroid and its surface. Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray–produced 21Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.


Earth, Planets and Space | 2004

The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice

Toru Yada; Tomoki Nakamura; Nobuo Takaoka; Takaaki Noguchi; Kentaro Terada; Hajime Yano; Takakiyo Nakazawa; Hideyasu Kojima

The accretion rate of micrometeorites in the last glacial period was estimated from the concentrations of micrometeorites in the blue ice around the Yamato Mts. in Antarctica. The samples from this study were collected from the five sampling points (M03, K02, K11, J09 and J10) in the blue ice. The blue ice was melted and filtered, and the micrometeorites were handpicked from the collected “glacial sands”. The weight of the micrometeorites in the blue ice was estimated from the abundance of recovered micrometeorites and the solar noble gas concentrations in the “residue” after handpicking. The age of the blue ice from the K area was estimated to be 27–33 kyr before present based on oxygen isotope data. The estimated accretion rate to the whole Earth ranges from 5300 × 103kg/a to 16000 × 103kg/a. However, the lower end of this range probably represents lower limits due to possible loss of solar noble gases during long residence in the glacier ice. Hence, we estimate that the accretion rate of micrometeorites 27–33 kyr before present to be in the range between (11000 ± 6600) × 103kg/a and (16000 ± 9100) × 103kg/a. These results, as well as the other estimates, suggest that the accretion rate of micrometeorites in the last glacial period was comparable to that in the present. Micrometeorite k]accretion rate k]Antarctica k]last glacial periods k]noble gas k]interplanetary dust particle


Proceedings of the National Academy of Sciences of the United States of America | 2012

Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft

Eizo Nakamura; Akio Makishima; Takuya Moriguti; Katsura Kobayashi; Ryoji Tanaka; Tak Kunihiro; Tatsuki Tsujimori; Chie Sakaguchi; Hiroshi Kitagawa; Tsutomu Ota; Yusuke Yachi; Toru Yada; Masanao Abe; Akio Fujimura; Munetaka Ueno; T. Mukai; Makoto Yoshikawa; Jun’ichiro Kawaguchi

Records of micrometeorite collisions at down to submicron scales were discovered on dust grains recovered from near-Earth asteroid 25143 (Itokawa). Because the grains were sampled from very near the surface of the asteroid, by the Hayabusa spacecraft, their surfaces reflect the low-gravity space environment influencing the physical nature of the asteroid exterior. The space environment was examined by description of grain surfaces and asteroidal scenes were reconstructed. Chemical and O isotope compositions of five lithic grains, with diameters near 50 μm, indicate that the uppermost layer of the rubble-pile-textured Itokawa is largely composed of equilibrated LL-ordinary-chondrite-like material with superimposed effects of collisions. The surfaces of the grains are dominated by fractures, and the fracture planes contain not only sub-μm-sized craters but also a large number of sub-μm- to several-μm-sized adhered particles, some of the latter composed of glass. The size distribution and chemical compositions of the adhered particles, together with the occurrences of the sub-μm-sized craters, suggest formation by hypervelocity collisions of micrometeorites at down to nm scales, a process expected in the physically hostile environment at an asteroid’s surface. We describe impact-related phenomena, ranging in scale from 10-9 to 104 meters, demonstrating the central role played by impact processes in the long-term evolution of planetary bodies. Impact appears to be an important process shaping the exteriors of not only large planetary bodies, such as the moon, but also low-gravity bodies such as asteroids.


Geochimica et Cosmochimica Acta | 2001

Bulk mineralogy of individual micrometeorites determined by X-ray diffraction analysis and transmission electron microscopy

Tomoki Nakamura; Takaaki Noguchi; Toru Yada; Yoshihiro Nakamuta; Nobuo Takaoka

Abstract Bulk mineralogy of individual fine-grained micrometeorites from 50 to 200 μm in diameter was determined on the basis of the powder X-ray diffraction patterns and the observation of internal textures by a transmission electron microscope (TEM). X-ray diffraction analysis of 56 micrometeorites indicated that 42, 11, and 3 samples are olivine-rich, pyroxene-rich, and phyllosilicate-rich micrometeorites, respectively. Among the phyllosilicate-rich micrometeorites, one contains saponite and other two contain serpentine. No samples contain both saponite and serpentine. We found that saponite-rich micrometeorite was weakly heated, which results in shrinkage of 001 basal spacing of saponite down to 9.7 A, and that cronstedtite, which is commonly contained in CM chondrites, occurs in serpentine-rich micrometeorites. Micrometeorites that consist entirely of anhydrous minerals and amorphous phases are predominant in the samples studied. The major phases of such micrometeorites are olivine, low-Ca pyroxene, magnetite, and Fe-sulfide and the average abundances are 65, 17, 11, and 7 wt%, respectively, when the total abundance of the four minerals are normalized to 100 wt%. The relative mineral abundance varies greatly between samples: low-Ca pyroxene/olivine ratios range from 0 to 3.5, with a mean of 0.3. TEM observations of inner portions of some micrometeorites revealed that they are aggregates of very small equigranular grains (∼100 nm) of olivine + magnetite, or low-Ca pyroxene + olivine + magnesiowustite. The textures are very similar to those of hydrous carbonaceous chondrite that was experimentally heated to temperature below melting point, thus suggesting that the micrometeorites had been hydrous particles but were decomposed by the brief heating upon atmospheric entry. It is newly found that magnesiowustite was formed in micrometeorites instead of magnetite as a product of phyllosilicate decomposition under low oxygen fugacity. The decomposed hydrous micrometeorites gave two types of characteristic X-ray diffraction patterns: (1) broad olivine and magnetite reflections or (2) variable intensities of magnesiowustite reflections together with magnetite, low-Ca pyroxene, and olivine reflections. Twenty-nine olivine- or pyroxene-rich micrometeorites showed such diffraction patterns, thus suggesting that more than half of micrometeorites investigated must be decomposed hydrous particles. The results confirmed that hydrous dust particles are much more abundant in the interplanetary space than in the micrometeorites recovered on the Earth.


Earth, Planets and Space | 2014

X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles

Hikaru Yabuta; Masayuki Uesugi; Hiroshi Naraoka; Motoo Ito; A. L. David Kilcoyne; Scott A. Sandford; Fumio Kitajima; Hajime Mita; Yoshinori Takano; Toru Yada; Yuzuru Karouji; Yukihiro Ishibashi; Tatsuaki Okada; Masanao Abe

Analyses with a scanning transmission x-ray microscope (STXM) using x-ray absorption near edge structure (XANES) spectroscopy were applied for the molecular characterization of two kinds of carbonaceous particles of unknown origin, termed category 3, which were collected from the Hayabusa spacecraft sample catcher. Carbon-XANES spectra of the category 3 particles displayed typical spectral patterns of heterogeneous organic macromolecules; peaks corresponding to aromatic/olefinic carbon, heterocyclic nitrogen and/or nitrile, and carboxyl carbon were all detected. Nitrogen-XANES spectra of the particles showed the presence of N-functional groups such as imine, nitrile, aromatic nitrogen, amide, pyrrole, and amine. An oxygen-XANES spectrum of one of the particles showed a ketone group. Differences in carbon- and nitrogen-XANES spectra of the category 3 particles before and after transmission electron microscopic (TEM) observations were observed, which demonstrates that the carbonaceous materials are electron beam sensitive. Calcium-XANES spectroscopy and elemental contrast mapping identified a calcium carbonate grain from one of the category 3 particles. No fluorine-containing molecular species were detected in fluorine-XANES spectra of the particles. The organic macromolecular features of the category 3 particles were distinct from commercial and/or biological ‘fresh (non-degraded)’ polymers, but the category 3 molecular features could possibly reflect degradation of contaminant polymer materials or polymer materials used on the Hayabusa spacecraft. However, an extraterrestrial origin for these materials cannot currently be ruled out.


Earth, Planets and Space | 2014

H, C, and N isotopic compositions of Hayabusa category 3 organic samples

Motoo Ito; Masayuki Uesugi; Hiroshi Naraoka; Hikaru Yabuta; Fumio Kitajima; Hajime Mita; Yoshinori Takano; Yuzuru Karouji; Toru Yada; Yukihiro Ishibashi; Tatsuaki Okada; Masanao Abe

Since isotopic ratios of H, C, and N are sensitive indicators for determining extraterrestrial organics, we have measured these isotopes of Hayabusa category 3 organic samples of RB-QD04-0047-02, RA-QD02-0120, and RB-QD04-0001 with ion imaging using a NanoSIMS ion microprobe. All samples have H, C, and N isotopic compositions that are terrestrial within errors (approximately ±50‰ for H, approximately ±9‰ for C, and approximately ±2‰ for N). None of these samples contain micrometer-sized hot spots with anomalous H, C, and N isotopic compositions, unlike previous isotope data for extraterrestrial organic materials, i.e., insoluble organic matters (IOMs) and nano-globules in chondrites, interplanetary dust particles (IDPs), and cometary dust particles. We, therefore, cannot conclude whether these Hayabusa category 3 samples are terrestrial contaminants or extraterrestrial materials because of the H, C, and N isotopic data. A coordinated study using microanalysis techniques including Fourier transform infrared spectrometry (FT-IR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), NanoSIMS ion microprobe, Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), and transmission electron microscopy/scanning transmission electron microscopy (TEM/STEM) is required to characterize Hayabusa category 3 samples in more detail for exploring their origin and nature.

Collaboration


Dive into the Toru Yada's collaboration.

Top Co-Authors

Avatar

Masayuki Uesugi

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Masanao Abe

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yukihiro Ishibashi

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuzuru Karouji

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsuaki Okada

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge