Torun Flatebø
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Torun Flatebø.
Resuscitation | 2014
Damjan Osredkar; Marianne Thoresen; Elke Maes; Torun Flatebø; Maja Elstad; Hemmen Sabir
BACKGROUND Therapeutic hypothermia (HT) is the standard treatment after perinatal hypoxic-ischemic (HI) injury. Infection increases vulnerability to HI injury, but the effect of HT on lipopolysaccharide (LPS) sensitized HI brain injury is unknown. DESIGN/METHODS P7 rat pups were injected either with vehicle or LPS, and after a 4h delay they were exposed to left carotid ligation followed by global hypoxia inducing a unilateral stroke-like HI injury. Pups were randomized to the following treatments: (1) vehicle treated HI-pups receiving normothermia treatment (NT) (Veh-NT; n=30); (2) LPS treated HI-pups receiving NT treatment (LPS-NT; n=35); (3) vehicle treated HI-pups receiving HT treatment (Veh-HT; n=29); or (4) LPS treated HI-pups receiving HT treatment (LPS-HT; n=46). Relative area loss of the left/right hemisphere and the areas of hippocampi were measured at P14. RESULTS Mean brain area loss in the Veh-NT group was 11.2±14%. The brain area loss in LPS-NT pups was 29.8±17%, which was significantly higher than in the Veh-NT group (p=0.002). The Veh-HT group had a significantly smaller brain area loss (5.4±6%), when compared to Veh-NT group (p=0.043). The LPS-HT group showed a brain area loss of 32.5±16%, which was significantly higher than in the Veh-HT group (p<0.001). LPS-HT group also had significantly smaller size of the left hippocampus, which was not found in other groups. LPS-sensitization significantly decreased the sizes of the right, unligated-hemispheres, independent of post-HI treatment. CONCLUSIONS Therapeutic hypothermia is not neuroprotective in this LPS-sensitized unilateral stroke-like HI brain injury model in newborn rats. Lack of neuroprotection was particularly seen in the hippocampus. Pre-insult exposure to LPS also induced brain area loss in the unligated hemisphere, which is normally not affected in this model.
Basic Research in Cardiology | 2007
Arno Ruusalepp; Gabor Czibik; Torun Flatebø; Jarle Vaage; Guro Valen
AbstractBackgroundHyperoxic exposure in vivo (> 95% oxygen) attenuates ischemia-reperfusion injury, but the signaling mechanisms of this cardioprotection are not fully determined. We studied a possible role of nitric oxide (NO) and mitogen activated protein kinases (MAPK) in hyperoxic protection.MethodsMice (n = 7–9 in each group) were kept in normoxic or hyperoxic environments for 15 min prior to harvesting the heart and Langendorff perfusion with global ischemia (45 min) and reperfusion (60 min). Endpoints were cardiac function and infarct size. Additional hearts were collected to evaluate MAPK phosphorylation (immunoblot). The nitric oxide synthase inhibitor L-NAME, the ERK1/2 inhibitor PD98059 and the p38 MAPK inhibitor FR167653 were injected intraperitoneally before hyperoxia or normoxia.ResultsHyperoxia improved postischemic functional recovery and reduced infarct size (p < 0.05). Hyperoxic exposure caused cardiac phosphorylation of the MAPK family members p38 and ERK1/2, but not JNK. L-NAME, PD98059 and FR167653 all reduced the protection afforded by hyperoxic exposure, but did not influence performance or infarction in hearts of normoxic mice. The hyperoxia-induced phosphorylation of ERK1/2 and p38 was reduced by L-NAME and both MAPK inhibitors.ConclusionNitric oxide triggers hyperoxic protection, and ERK1/2 and p38 MAPK are involved in signaling of protection against ischemia-reperfusion injury.
Critical Care Medicine | 2004
Mats Johansson; Andreas Wiklund; Torun Flatebø; Anne Nicolaysen; Gunnar Nicolaysen; Sten Walther
Objective:To examine interactions between positive end-expiratory pressure (PEEP) and posture on regional distribution of ventilation and to compare measurements of regional ventilation with two aerosols: a wet fluorescent microsphere aerosol (FMS, median mass aerodynamic diameter 1.1 &mgr;m) and a dry 99mTc-labeled carbon particle aerosol (Technegas, TG, median mass aerodynamic diameter ≈0.1 &mgr;m). Design:Experimental study. Setting:Academic laboratory. Subjects:Anesthetized and mechanically ventilated sheep (n = 16). Interventions:Four conditions were studied: prone or supine posture with or without 10 cm H2O PEEP. Measurements and Main results:Comparisons of FMS and TG were made in five animals. The median correlation coefficient of the two ventilation tracers was .95 (range, .91–.96). The mean ventilation per unit weight of dry lung for horizontal planes was almost identical whether measured with TG or FMS. The distribution of ventilation was assessed by analyzing deposition of aerosol in about 1,000 lung regions per animal. Distribution of ventilation down the vertical axis was linear in prone (the slope indicated a dorsal-to-ventral three-fold difference in ventilation) but unimodal in supine animals with the mode in the center of the lung. Redistribution of ventilation with 10 PEEP differed between posture, shifting the mode in supine toward dependent lung regions while eliminating the dorsal-to-ventral gradient in prone. The regional heterogeneity in ventilation was greater in supine sheep at both levels of PEEP, and this was due mostly to greater isogravitational heterogeneity in supine than in prone position. Conclusions:The wet fluorescent microsphere aerosol was as reliable as Technegas for high-resolution measurements of regional ventilation. The markedly different effects of 10 PEEP in supine and prone sheep may have important implications for gas exchange both in noninjured and injured lungs.
Scientific Reports | 2016
Thomas Wood; Damjan Osredkar; Maja Puchades; Elke Maes; Mari Falck; Torun Flatebø; Lars Walløe; Hemmen Sabir; Marianne Thoresen
Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants with severe encephalopathy. In a neonatal rat model of unilateral hypoxia-ischaemia (HI), the effect of five different HT temperatures was investigated after either moderate or severe injury. At postnatal-day seven, rat pups underwent moderate or severe HI followed by 5 h at normothermia (37 °C), or one of five HT temperatures: 33.5 °C, 32 °C, 30 °C, 26 °C, and 18 °C. One week after treatment, neuropathological analysis of hemispheric and hippocampal area loss, and CA1 hippocampal pyramidal neuron count, was performed. After moderate injury, a significant reduction in hemispheric and hippocampal loss on the injured side, and preservation of CA1 pyramidal neurons, was seen in the 33.5 °C, 32 °C, and 30 °C groups. Cooling below 33.5 °C did not provide additional neuroprotection. Regardless of treatment temperature, HT was not neuroprotective in the severe HI model. Based on these findings, and previous experience translating preclinical studies into clinical application, we propose that milder cooling should be considered for future clinical trials.
The Journal of Physiology | 1997
Masataka Onizuka; Torun Flatebø; Gunnar Nicolaysen
1 To study the lymph flow dynamics in the intact thoracic duct, we applied an ultrasound transit‐time flow probe in seven anaesthetized and four unanaesthetized adult sheep (.60 kg). In unanaesthetized non‐fasting animals we found that lymph flow in the thoracic duct was always regular pulsatile (pulsation frequency, 5.2 ± 0.8 min−1) with no relation to heart or respiratory activity. At baseline the peak level of the thoracic duct pulse flow was 11.6–20.7 ml min−1 with a nadir of 0–3.6 ml min−1. Mean lymph flow was 5.4 ± 3.1 ml min−1. The flow pattern of lymph in the thoracic duct was essentially the same in the anaesthetized animals. 2 In both the anaesthetized and unanaesthetized animals, the lymph flow response to a stepwise increase in the outflow venous pressure showed interindividual variation. Some were sensitive to any increase in outflow venous pressure, but others were resistant in that lymph flow did not decrease until outflow venous pressure was increased to higher levels. This resistance was also observed in the high lymph flow condition produced by fluid infusion in the anaesthetized animal and mechanical constriction of the caudal vena cava in the unanaesthetized animals. Pulsation frequency of the thoracic duct flow initially increased and then decreased with a stepwise increase in the outflow venous pressure. This initial increase might be a compensatory response to maintain lymph flow against elevated outflow venous pressure. 3 To test the effect of long‐term outflow venous pressure elevation in unanaesthetized sheep, outflow venous pressure was increased by inflation of a cuff around the cranial vena cava for 1, 5 or 25 h. The cuff was inflated to a level where lymph flow was reduced. Lymph flow remained low or decreased further during the entire cuff‐inflation period. We calculated the lymph debt caused by the outflow venous pressure elevation and the amount ‘repaid’ when venous pressure returned to normal. Lymph debt for 25 h was 6400 ml but only 200 ml was repaid. Since we observed no visible oedema formation in the lower body of the sheep, the non‐colloidal components of the lymph must have been reabsorbed into the bloodstream, most likely in the lymph nodes.
Developmental Neuroscience | 2015
Damjan Osredkar; Hemmen Sabir; Mari Falck; Thomas Wood; Elke Maes; Torun Flatebø; Maja Puchades; Marianne Thoresen
Introduction: Bacterial lipopolysaccharide (LPS) injection prior to hypoxia-ischaemia significantly increases hypoxia-ischaemic brain injury in 7-day-old (P7) rats. In addition, therapeutic hypothermia (HT) is not neuroprotective in this setting. However, the mechanistic aspects of this therapeutic failure have yet to be elucidated. This study was designed to investigate the underlying cellular mechanisms in this double-hit model of infection-sensitised hypoxia-ischaemic brain injury. Material and Methods: P7 rat pups were injected with either vehicle or LPS, and after a 4-hour delay were exposed to left carotid ligation followed by global hypoxia inducing a unilateral stroke-like hypoxia-ischaemic injury. Pups were randomised to the following treatments: (1) vehicle-treated pups receiving normothermia treatment (NT) (Veh-NT; n = 40), (2) LPS-treated pups receiving NT treatment (LPS-NT; n = 40), (3) vehicle-treated pups receiving HT treatment (Veh-HT; n = 38) and (4) LPS-treated pups receiving HT treatment (LPS-HT; n = 35). On postnatal day 8 or 14, Western blot analysis or immunohistochemistry was performed to examine neuronal death, apoptosis, astrogliosis and microglial activation. Results: LPS sensitisation prior to hypoxia-ischaemia significantly exacerbated apoptotic neuronal loss. NeuN, a neuronal biomarker, was significantly reduced in the LPS-NT and LPS-HT groups (p = 0.008). Caspase-3 activation was significantly increased in the LPS-sensitised groups (p < 0.001). Additionally, a significant increase in astrogliosis (glial fibrillary acidic expression, p < 0.001) was seen, as well as a trend towards increased microglial activation (Iba 1 expression, p = 0.051) in LPS-sensitised animals. Treatment with HT did not counteract these changes. Conclusion: LPS-sensitised hypoxia-ischaemic brain injury in newborn rats is mediated through neuronal death, apoptosis, astrogliosis and microglial activation. In this double-hit model, treatment with HT does not ameliorate these changes.
World Journal of Experimental Medicine | 2013
Kristin L. Sand; Torun Flatebø; Marian Berge Andersen; Azzam A. Maghazachi
AIM To investigate the effects of exercise on healthy individuals of both genders. METHODS This study lasted 6 years and involved about 800 healthy people. Individuals were divided into females and males and further sub-divided into two groups; in the first group individuals run (or skied in the winter time) and then rested for 3 h, whereas individuals in the second group intensely cycled for 5 min. The status of health was determined by measuring the sedimentation rate and the intensity of exercises by measuring the heart rate. Blood samples were collected before and after exercise. RESULTS We observed that in the first group a significant increase of the total white blood cells, segmented neutrophils, band neutrophils, eosinophils and to a lesser extent lymphocytes but not monocytes in the blood circulation. However, all cell types were increased in the circulation after 5 min intense exercise. No differences in the pattern of cell increase were observed among the genders. Activated partial thromboplastin time (APTT) and D-dimer were also measured in the blood of individuals who cycled intensely for 5 min to determine the coagulation and fibrinolytic activities in the blood. APTT is reduced and D-dimer values significantly increased after intense exercise. However, APTT was statistically lower in males than females, whereas no differences in the D-dimer values were observed among the genders. CONCLUSION Our results indicate that exercise whether leisure or strenuous affects leukocytosis and hemostasis in both genders. A major advantage of this study is the high numbers of individuals involved and the inclusion of both females and males values.
Acta Anaesthesiologica Scandinavica | 2007
M. N. Melsom; Torun Flatebø; Gunnar Nicolaysen
Background: Chronic obstructive pulmonary disease (COPD) is characterized by airway narrowing that is most frequently inhomogeneously distributed. Ventilation/perfusion (V̇/Q̇) mismatch may explain much of the hypoxemia in patients with advanced disease. A potential treatment strategy would be to redistribute blood flow to well‐ventilated lung regions in order to decrease V̇/Q̇ mismatch. It has been suggested that inhaled nitric oxide (iNO) in physiologic concentrations (∼ 100 p.p.b.) could act as a local vasodilating agent in well‐ventilated lung regions. To test this, we included 10 volunteer patients with very severe COPD in this study.
Neonatology | 2018
Mari Falck; Damjan Osredkar; Thomas Wood; Elke Maes; Torun Flatebø; Hemmen Sabir; Marianne Thoresen
Background: After neonatal asphyxia, therapeutic hypothermia (HT) is the only proven treatment option. Although established as a neuroprotective therapy, benefit from HT has been questioned when infection is a comorbidity to hypoxic-ischaemic (HI) brain injury. Gram-negative and gram-positive species activate the immune system through different pathogen recognition receptors and subsequent immunological systems. In rodent models, gram-negative (lipopolysaccharide [LPS]) and gram-positive (PAM3CSK4 [PAM]) inflammation similarly increase neuronal vulnerability to HI. Interestingly, while LPS pre-sensitisation negates the neuroprotective effect of HT, HT is highly beneficial after PAM-sensitised HI brain injury. Objective: We aimed to examine whether systemic gram-positive or gram-negative inflammatory sensitisation affects juvenile rat pups per se, without an HI insult. Methods: Neonatal 7-day-old rats (n = 215) received intraperitoneal injections of vehicle (0.9% NaCl), LPS (0.1 mg/kg), or PAM (1 mg/kg). Core temperature and weight gain were monitored. Brain cytokine expression (IL-6, IL-1β, TNF-α, and IL-10, via PCR), apoptosis (cleaved caspase 3, via Western blots), and microglial activation (Iba1, via immunohistochemistry) were examined. Results: LPS induced an immediate drop in core temperature followed by poor weight gain, none of which were seen after PAM. Furthermore, LPS induced brain apoptosis, while PAM did not. The magnitude and temporal profile of brain cytokine expression differed between LPS- and PAM-injected animals. Conclusion: These findings reveal sepsis-like conditions and neuroinflammation specific to the inflammatory stimulus (gram-positive vs. gram-negative) in the neonatal rat. They emphasise the importance of pre-clinical models being pathogen dependent, and should always be carefully tailored to their clinical scenario.
Developmental Neuroscience | 2018
Mari Falck; Damjan Osredkar; Elke Maes; Torun Flatebø; Thomas Wood; Lars Walløe; Hemmen Sabir; Marianne Thoresen
Background: Preclinical research on the neuroprotective effect of hypothermia (HT) after perinatal asphyxia has shown variable results, depending on comorbidities and insult severity. Exposure to inflammation increases vulnerability of the neonatal brain to hypoxic-ischaemic (HI) injury, and could be one explanation for those neonates whose injury is unexpectedly severe. Gram-negative type inflammatory exposure by lipopolysaccharide administration prior to a mild HI insult results in moderate brain injury, and hypothermic neuroprotection is negated. However, the neuroprotective effect of HT is fully maintained after gram-positive type inflammatory exposure by PAM3CSK4 (PAM) pre-administration in the same HI model. Whether HT is neuroprotective in severe brain injury with gram-positive inflammatory pre-exposure has not been investigated. Methods: 59 seven-day-old rat pups were subjected to a unilateral HI insult, with left carotid artery ligation followed by 90-min hypoxia (8% O2 at Trectal 36°C). An additional 196 pups received intraperitoneal 0.9% saline (control) or PAM1 mg/kg, 8 h before undergoing the same HI insult. After randomisation to 5 h normothermia (NT37°C) or HT32°C, pups survived 1 week before they were sacrificed by perfusion fixation. Brains were harvested for hemispheric and hippocampal area loss analyses at postnatal day 14, as well as immunostaining for neuron count in the HIP CA1 region. Results: Normothermic PAM animals (PAM-NT) had a comparable median area loss (hemispheric: 60% [95% CI 33–66]; hippocampal: 61% [95% CI 29–67]) to vehicle animals (Veh-NT) (hemispheric: 58% [95% CI 11–64]; hippocampal: 60% [95% CI 19–68]), which is defined as severe brain injury. Furthermore, mortality was low and similar in the two groups (Veh-NT 4.5% vs. PAM-NT 6.6%). HT reduced hemispheric and hippocampal injury in the Veh group by 13 and 28%, respectively (hemispheric: p = 0.048; hippocampal: p = 0.042). HT also provided neuroprotection in the PAM group, reducing hemispheric injury by 22% (p = 0.03) and hippocampal injury by 37% (p = 0.027). Conclusion: In these experiments with severe brain injury, Toll-like receptor-2 triggering prior to HI injury does not have an additive injurious effect, and there is a small but significant neuroprotective effect of HT. HT appears to be neuroprotective over a continuum of injury severity in this model, and the effect size tapers off with increasing area loss. Our results indicate that gram-positive inflammatory exposure prior to HI injury does not negate the neuroprotective effect of HT in severe brain injury.