Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiaki Hirai is active.

Publication


Featured researches published by Toshiaki Hirai.


Development Growth & Differentiation | 1991

A Monoclonal Antibody Against the PSTAIR Sequence of p34cdc2, Catalytic Subunit of Maturation‐Promoting Factor and Key Regulator of the Cell Cycle

Masakane Yamashita; Michiyasu Yoshikuni; Toshiaki Hirai; Sachiko Fukada; Yoshitaka Nagahama

A homolog of the serine/threonine protein kinase (p34cdc2), encoded by the cdc2+ gene of the fission yeast (Schizosaccharomyces pombe), is a catalytic subunit of maturation‐promoting factor and a key regulator of the cell cycle. We have raised a monoclonal antibody against the most conserved amino acid sequence, the PSTAIR sequence (EGVPSTAIREISLLKE) of p34cdc2 This antibody recognizes 31–34 kDa proteins by immunoblotting in all species examined so far. The proteins recognized by the anti‐PSTAIR antibody are probably either p34cdc2 itself or proteins highly homologous to p34cdc2 in the given species, since, in all species studies to date, they are all precipitated with p13suc1, the fission yeast suc1+ gene product, which binds to p34cdc2 with high specificity. The anti‐PSTAIR immunoprecipitate had no histone H1 kinase activity and did not contain cyclin B, suggesting that the PSTAIR region is masked when p34cdc2 forms a complex with cyclin B as an active kinase. Immunoblotting with the anti‐PSTAIR antibody demonstrated that the fastest‐migrating form of p34cdc2 homologues becomes abundant, when oocytes mature or the cell enters M phase. The possible significance of this observation is discussed in relation to the phosphorylation and activity state of p34cdc2 The observed broad cross‐reactivity of the anti‐PSTAIR antibody against p34cdc2 homologues in various species should permit us to examine the role of p34cdc2 homologues in the regulation of the cell cycle in a variety of organisms.


Molecular Reproduction and Development | 2010

High temperature causes masculinization of genetically female medaka by elevation of cortisol

Yuki Hayashi; Hiroshi Kobira; Toshiya Yamaguchi; Eri Shiraishi; Takashi Yazawa; Toshiaki Hirai; Yasuhiro Kamei; Takeshi Kitano

In poikilothermic vertebrates, sex determination is sometimes influenced by environmental factors such as temperature. However, little is known about the molecular mechanisms underlying environmental sex determination. The medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system. Recently, it was reported that XX medaka can be sex‐reversed into phenotypic males by high water temperature (HT; 32–34°C) treatment during the sex differentiation period. Here we report that cortisol caused female‐to‐male sex reversal and that metyrapone (an inhibitor of cortisol synthesis) inhibited HT‐induced masculinization of XX medaka. HT treatment caused elevation of whole‐body levels of cortisol, while metyrapone suppressed the elevation by HT treatment during sexual differentiation. Moreover, cortisol and 33°C treatments inhibited female‐type proliferation of germ cells as well as expression of follicle‐stimulating hormone receptor (fshr) mRNA in XX medaka during sexual differentiation. These results strongly suggest that HT induces masculinization of XX medaka by elevation of cortisol level, which, in turn, causes suppression of germ cell proliferation and of fshr mRNA expression. Mol. Reprod. Dev. 77: 679–686, 2010.


Aquatic Toxicology | 2012

Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring

Anke Lange; Yoshinao Katsu; Shinichi Miyagawa; Yukiko Ogino; Hiroshi Urushitani; Tohru Kobayashi; Toshiaki Hirai; Janice A. Shears; Masaki Nagae; Jun Yamamoto; Yuta Ohnishi; Tomohiro Oka; Norihisa Tatarazako; Yasuhiko Ohta; Charles R. Tyler; Taisen Iguchi

Exposure to estrogenic chemicals discharged into the aquatic environment has been shown to induce feminization in wild freshwater fish and although fish species have been reported to differ in their susceptibility for these effects, empirical studies that directly address this hypothesis are lacking. In this study, in vitro ERα activation assays were applied in a range of fish species used widely in chemical testing (including, zebrafish, fathead minnow, medaka) and/or as environmental monitoring species (including, roach, stickleback, carp) to assess their comparative responsiveness to natural (estrone, estradiol, estriol) and synthetic (17α-ethinylestradiol (EE2), diethylstilbestrol (DES)) estrogens. In vivo exposures to EE2 via the water (nominal 2 and 10 ng/L for 7 days) were also conducted for seven fish species to compare their responsiveness for hepatic vitellogenin (VTG) mRNA induction (an ER mediated response). Of the fish species tested, zebrafish ERα was found to be the most responsive and carp and stickleback ERα the least responsive to natural steroid estrogens. This was also the case for exposure to EE2 with an ERα-mediated response sensitivity order of zebrafish > medaka > roach > fathead minnow > carp > stickleback. For VTG mRNA induction in vivo, the order of species responsiveness was: rainbow trout (not tested in the ERα activation assays) > zebrafish > fathead minnow > medaka > roach > stickleback > carp. Overall, the responses to steroid estrogens in vitro via ERα compared well with those seen in vivo (VTG induction for exposure to EE2) showing in vitro screening of chemicals using fish ERα-mediated responses indicative of estrogenic responses (VTG induction) in vivo.


General and Comparative Endocrinology | 2008

Molecular cloning and quantitative expression of sexually dimorphic markers Dmrt1 and Foxl2 during female-to-male sex change in Epinephelus merra.

Mohammad Ashraful Alam; Yasuhisa Kobayashi; Ryo Horiguchi; Toshiaki Hirai; Masaru Nakamura

The honeycomb grouper (Epinephelus merra) is one of the smallest members of the Serranidae family and is often used to study protogynous sex change. To determine the role of the male-determining gene Dmrt1 and the ovarian-specific gene Foxl2 in sex change, we cloned these two markers from E. merra gonads by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Two isoforms, Dmrt1a and Dmrt1b, resulted from alternative splicing in the coding region, causing the insertion of one glutamine residue in Dmrt1b. RT-PCR revealed that Dmrt1 was expressed only in the gonads, with higher levels in the testis than in the ovary. cDNA encoding Foxl2 was isolated from the ovary; Foxl2 was expressed extensively in the brain, pituitary, gonads, and gill, with its highest level in the ovary, indicating a potential role for Foxl2 in the brain-pituitary-gonad axis. Real-time quantitative RT-PCR analyses showed that Foxl2 mRNA expression was significantly downregulated from the late transitional phase to the completion of sex change. Conversely, Dmrt1 expression increased with the progression of spermatogenesis and continued until the formation of the testis. The expression profiles of these two sex-specific marker genes corresponded closely with the histological process of sex change. The down-regulation of Foxl2 most likely facilitates oocyte degeneration, whereas the up-regulation of Dmrt1 causes the proliferation of gonial germ cells into spermatogina and initiates sex change.


Comparative Biochemistry and Physiology B | 2001

Fish gonadotropin and thyrotropin receptors: the evolution of glycoprotein hormone receptors in vertebrates.

Yuichi Oba; Toshiaki Hirai; Yasutoshi Yoshiura; Tohru Kobayashi; Yoshitaka Nagahama

We have cloned and characterized, for the first time in fish, two different gonadotropin receptors (GTHR) and a single thyrotropin receptor (TSHR) from amago salmon (Oncorhynchus rhodurus) and Nile tilapia (Oreochromis niloticus). Phylogenetic analyses and intron/exon structure suggest that the two GTHRs in fish are comparable to tetrapod follicle stimulating hormone and luteinizing hormone receptors. Temporal and spatial expression patterns, examined by Northern blot analysis and in situ hybridization, paralleled those seen in mammals and birds. Consequently, genetic and functional divergence of two GTHRs and TSHR probably occurred before the teleost and tetrapod split.


Bioscience, Biotechnology, and Biochemistry | 2001

A Novel Rhamnose-binding Lectin Family from Eggs of Steelhead Trout (Oncorhynchus mykiss) with Different Structures and Tissue Distribution

Hiroaki Tateno; Tomohisa Ogawa; Koji Muramoto; Hisao Kamiya; Toshiaki Hirai; Mineo Saneyoshi

An L-rhamnose-binding isolectin named STL3 (subunit Mr, 21.5 k) was isolated from eggs of the steelhead trout (Oncorhynchus mykiss) in addition to STL1 (subunit Mr, 31.4 k) and STL2 (subunit Mr, 21.3 k) that had been already isolated. STLs were composed of non-covalently linked subunits. The primary structures of STL1 and STL3 were analyzed by the combined use of protein sequencing and cDNA sequencing. A cDNA encoding STL2, of which the protein sequence had been previously studied, was also analyzed. The STL1 subunit (289 amino acid residues) had different structural properties compared to those of the STL2 subunit (195 amino acid residues) and the STL3 subunit (195 amino acid residues); e.g., the number of repeated domain (three for STL1, and two for STL2 and STL3), although all of them were composed of tandemly repeated homologous domains (40 to 53% identities). The lectin levels in various tissues and during the embryonic development showed that STL1 had different distribution and expression profiles from those of STL2 and STL3. Although STL1 could be detected in several tissues and serum of both male and female steelhead trout, STL2 and STL3 were only abundant in the ovary. STL2 and STL3 levels dramatically decreased just after hatching, however, the STL1 level increased temporarily. These results indicate that the multiple lectins from eggs of the steelhead trout form a novel rhamnose-binding lectin family with different structures and tissue distribution to share distinct functions in eggs.


Developmental Biology | 1992

Isolation and characterization of goldfish cdk2, a cognate variant of the cell cycle regulator cdc2.

Toshiaki Hirai; Masakane Yamashita; Michiyasu Yoshikuni; Toshinobu Tokumoto; Hiroko Kajiura; Noriyoshi Sakai; Yoshitaka Nagahama

This paper reports the nucleotide and predicted amino acid sequences of the goldfish cdk2, a cognate variant of the cell cycle regulator cdc2. The predicted protein sequence shows strong homology to the other known cdk2 (88% for Xenopus and 90% for human). A monoclonal antibody against the C-terminal sequence of goldfish cdk2 recognized a 34-kDa protein in extracts from various goldfish tissues. The protein level was high in such tissues as testis and ovary containing actively dividing cells. Protein cdk2 binds to p13sucl, the fission yeast suc1+ gene product, but not to cyclin B, with which cdc2 forms a complex. The kinase activity of cdk2 increased 30-fold when oocytes matured, although its protein level did not remarkably change. Anti-cdk2 immunoprecipitates from 32P-labeled mature oocyte extracts contained a 47-kDa protein, which was not recognized by either anti-cyclin A or anti-cyclin B antibody, indicating complex formation of cdk2 with a protein other than cyclins A or B.


General and Comparative Endocrinology | 2009

Molecular characterization and quantification of the gonadotropin receptors FSH-R and LH-R from Atlantic cod (Gadus morhua)

C. Mittelholzer; E. Andersson; G.L. Taranger; D. Consten; Toshiaki Hirai; B. Senthilkumaran; Yoshitaka Nagahama; B. Norberg

In order to elucidate regulatory mechanisms during puberty final oocyte maturation and spawning, full-length sequences coding for the receptors for follicle-stimulating hormone (FSH-R) and luteinizing hormone (LH-R) were isolated from female Atlantic cod (Gadus morhua) by a RACE-PCR based strategy. The nucleotide and amino acid sequences showed high homologies with the corresponding sequences of other fish species but contained some distinct differences. Conserved features important for functionality, such as a long N-terminal extracellular domain (ECD), seven transmembrane domains and a short C-terminal intracellular domain, were identified in both predicted proteins. Partial genomic sequences for these genes were also determined, allowing the design of mRNA-specific quantitative PCR assays. Due to suspected alternative splicing during expression of these genes, additional real-time PCR assays detecting variants containing the membrane-anchoring domain were established. Besides the expected expression of FSH-R and LH-R mRNA in the gonads similarly strong signals for LH-R were also obtained in male gill, and in female and male brain. When relative expression was analysed at different stages of sexual maturation, levels for FSH-R increased moderately during gonadal growth whereas those of LH-R showed a high peak at spawning.


Developmental Dynamics | 2013

Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus

Ryo Horiguchi; Ryo Nozu; Toshiaki Hirai; Yasuhisa Kobayashi; Yoshitaka Nagahama; Masaru Nakamura

Background: Sex change in fishes provides a good experimental model for understanding the mechanisms and plasticity of sex determination and differentiation. The three‐spot wrasse, Halichoeres trimaculatus is a protogynous hermaphrodite. During sex change from female to male, the ovary is replaced by the testis through the degeneration of oocytes and subsequent spermatogenesis. In the present study, we cloned a cDNA‐encoding gonadal soma‐derived factor (GSDF) from protogynous wrasse and examined its expression pattern in the sexually mature gonads and the sex‐changing gonad induced experimentally by aromatase inhibition. Results: Expression of gsdf was predominantly observed in the testis, and it was mainly localized to the supporting cells surrounding the spermatogonia. In the ovary, only slight expression of gsdf was observed in morphologically undifferentiated supporting cells in contact with oogonia. During sex change, strong expression of gsdf appeared first in the supporting cells surrounding the gonial germ cells before the onset of spermatogenesis. Thereafter, the expression of gsdf continually increased in the supporting cells surrounding the proliferating spermatogonia throughout the sex change. Conclusions: These results suggest that gsdf is involved in the proliferation of spermatogonia and subsequent spermatogenesis in both the testis and the gonad in the early stages of sex change. Developmental Dynamics 242:388–399, 2013.


General and Comparative Endocrinology | 2011

Molecular cloning of two gonadotropin receptors and their distinct mRNA expression profiles in daily oogenesis of the wrasse Pseudolabrus sieboldi

Hajime Kitano; Susumu Irie; Kohei Ohta; Toshiaki Hirai; Akihiko Yamaguchi; Michiya Matsuyama

In fish, asynchronous development of ovarian follicles, the simultaneous advance of vitellogenesis and oocyte maturation in one ovary, is a rational reproductive strategy to spawn consecutively in one spawning season. In this study, to clarify the mode of action of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in asynchronous ovarian follicle development in daily egg production, we cloned cDNAs of the follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in the bambooleaf wrasse (Pseudolabrus sieboldi), which exhibits clear diurnal spawning rhythms over 1 month. In addition, different developmental stages of ovarian follicles were isolated from whole ovaries at various daily time points on 1 day in the spawning season, and mRNA expression levels of FSHR and LHR were analyzed. Sequence analysis showed distinct differences in the number of putative leucine-rich repeats at the extracellular domain between FSHR and LHR, suggesting a difference in ligand-specificity. Real-time PCR analyses revealed that FSHR mRNA was highly expressed in early yolk-stage follicles but decreased at the end of vitellogenesis. In contrast, the expression of LHR mRNA was maintained at low levels in vitellogenic stage follicles but markedly elevated at the end of the vitellogenic and early migratory nucleus stages, thereafter markedly dropping in the late migratory nucleus stage. The present results suggest that co-regulation of vitellogenesis and oocyte maturation in one ovary is controlled by the stage-distinctive expression levels of FSHR and LHR mRNA in ovarian follicles, and daily switching of sensitivity from FSH to LH is required for daily egg production.

Collaboration


Dive into the Toshiaki Hirai's collaboration.

Top Co-Authors

Avatar

Mineo Saneyoshi

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yuichi Oba

National Institute for Basic Biology

View shared research outputs
Top Co-Authors

Avatar

Masaru Nakamura

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge